首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2249篇
  免费   308篇
  国内免费   169篇
测绘学   23篇
大气科学   10篇
地球物理   678篇
地质学   1829篇
海洋学   20篇
天文学   1篇
综合类   80篇
自然地理   85篇
  2024年   7篇
  2023年   20篇
  2022年   41篇
  2021年   63篇
  2020年   70篇
  2019年   60篇
  2018年   56篇
  2017年   63篇
  2016年   97篇
  2015年   91篇
  2014年   116篇
  2013年   133篇
  2012年   69篇
  2011年   73篇
  2010年   95篇
  2009年   169篇
  2008年   225篇
  2007年   211篇
  2006年   218篇
  2005年   145篇
  2004年   117篇
  2003年   74篇
  2002年   72篇
  2001年   63篇
  2000年   49篇
  1999年   55篇
  1998年   46篇
  1997年   39篇
  1996年   35篇
  1995年   40篇
  1994年   28篇
  1993年   28篇
  1992年   16篇
  1991年   2篇
  1990年   8篇
  1989年   5篇
  1988年   8篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   6篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1971年   1篇
  1954年   1篇
排序方式: 共有2726条查询结果,搜索用时 15 毫秒
91.
利用宋桥井田奥灰群孔抽水试验资料,根据补(隔)水边界水位曲线的特征,采用半对数直线图解法,将井田F2-9断层定性为补给边界。为了解补给边界的补给量,选用边界补给量计算方法.计算出了边界补给量占孔流量的65%,从而较客观地确定了井田水文地质条件类型。  相似文献   
92.
In order to estimate submarine groundwater discharge (SGD) and SGD-driven nutrient fluxes, we measured the concentrations of nutrients, 224Ra, and 226Ra in seawater, river water, and coastal groundwater of Yeongil Bay (in the southeastern coast of Korea) in August 2004 and February 2005. The bottom sediments over the shallow areas of this bay are composed mainly of coarse sands. Large excess concentrations of 224Ra, 226Ra, and Si supplied from SGD were observed in August 2004, while these excess concentrations were not apparent in February 2005. Based on the mass balance for 224Ra, 226Ra, and Si, which showed conservative mixing behavior in seawater, SGD was estimated to be approximately 6 × 106 m3 day− 1 (seepage rate = 0.2 m day− 1) in shallow areas (< 9 m water depth) in August 2004, which is much higher than the SGD level typically found in other coastal regions worldwide. During the summer period, SGD-driven nutrients in this bay contributed approximately 98%, 12%, and 76% of the total inputs for dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicate (DSi), respectively. Our study implies that the ecosystem in this highly permeable bed coastal zone is influenced strongly by SGD during summer, while such influences are negligible in winter.  相似文献   
93.
C. Rocha  J. Ibanhez  C. Leote   《Marine Chemistry》2009,115(1-2):43-58
To investigate both the role of tides on the timing and magnitude of Submarine Groundwater Discharge (SGD), and the effect on benthic nitrogen biogeochemistry of nitrate-enriched brackish water percolating upwards at the seepage face, we conducted a study of SGD rates measured simultaneously with seepage meters and mini-piezometers, combined with sets (n = 39) of high resolution in-situ porewater profiles describing NH4+, NO3, Si(OH)4 and salinity distribution with depth (0–20 cm). Sampling took place during two consecutive spring tidal cycles in four different months (November 2005, March, April and August 2006) at a backbarrier beach face in the Ria Formosa lagoon, southern Portugal. Our results show that the tide is one of the major agents controlling the timing and magnitude of SGD into the Ria Formosa. Intermittent pumping of brackish, nitrate-bearing water at the beach face through surface sediments changed both the magnitudes and depth distributions of porewater NH4+ and NO3 concentrations. The most significant changes in nitrate and ammonium concentrations were observed in near-surface sediment horizons coinciding with increased fraction of N in benthic organic matter, as shown by the organic C:N ratio. On the basis of mass balance calculations executed on available benthic profiles, providing ratios of net Ammonium Production Rate (APR) to Nitrate Reduction Rate (NRR), coupled to stoichiometric calculations based on the composition of organic matter, potential pathways of nitrogen transformation were speculated upon. Although the seepage face occasionally contributes to reduce the groundwater-borne DIN loading of the lagoon, mass balance analysis suggests that a relatively high proportion of the SGD-borne nitrogen flowing into the lagoon may be enhanced by nitrification at the shallow (1–3 cm) subsurface and modulated by dissimilatory nitrate reduction to ammonium (DNRA).  相似文献   
94.
Managed aquifer recharge is an effective method for utilizing excess flood flows, but clogging of porous media is a limiting factor in the implementation of this water storage technique. In recent years, much research on the physical clogging of porous media during artificial recharge has been conducted. However, the understanding of clogging due to silt‐sized suspended solids (SS) is still inadequate, especially under varying physical conditions. Here, we subjected sand columns to controlled rates of flow and SS suspensions to investigate the influence of media size, SS size, SS concentration, and flow velocity on the clogging of porous media by silt‐sized SS. The results show that the diameter ratio of SS particles to sand grains is the dominant factor influencing the position of physical clogging. As pore velocity increased, the mobility of silt‐sized SS was enhanced and retention in the porous media decreased noticeably. The spatial retention profiles in the porous media were found to vary greatly at different flow velocities. The SS concentration of the infiltrating suspension also dramatically influenced the mobility and deposition of silt‐sized SS particles, such that high concentrations accelerated the clogging process. As the different physical factors changed, the breakthrough curves and retention profiles of silt‐sized SS particles changed obviously and the mechanisms of retention differed. On the whole, clogging position is mainly determined by particle size ratio, but clogging rate is dominated by a variety of factors including particle size ratio, SS concentration, and flow velocity.  相似文献   
95.
《水文科学杂志》2013,58(4):682-699
Abstract

The study area consists of the spring zones of the Kr?i?, Krka and Cetina river catchments located in the Dinaric karst, Croatia. Classical hydrological approaches and some newer time and frequency domain methods are used in order to validate the existing hypotheses both qualitatively and quantitatively, and these contribute to factual information about the hydrological behaviour of the catchments. The groundwater recharge rates are calculated by a mathematical model based on Palmer's soil-moisture balance method. The values of parameters of the groundwater recharge model are estimated by the spectral method. The calculated monthly and annual groundwater recharge rates form the basis for estimating the hydrological catchment areas of the spring zones and also for the determina-tion of quantitative relationships between the catchments.  相似文献   
96.
《水文科学杂志》2013,58(3):526-537
Abstract

The study of the Continental Intercalaire aquifer system of southern Tunisia, based on the interpretation of geochemical (major elements) and isotopic (18O, 2H, 13C and 14C) data, has aided the understanding of the hydrodynamics of this multi-layer aquifer system, which is greatly influenced by tectonics. The determination of the origin of groundwater salinization and the understanding of the hydrogeological and geochemical behaviour of this aquifer were achieved by studying the correlation between the major elements and total mineralization (TDS). By using isotopic tools, it was shown that the water of this aquifer has been recharged under cooler, palaeoclimatic conditions. The technique also made it possible to better understand the hydrodynamic functioning of the aquifer system: it showed that the relatively recent recharge of the aquifer has been by direct infiltration from carbonate and sandy outcrops of the Cretaceous and Miocene, respectively, located in the eastern and northeastern parts of the aquifer. The 18O content was used to calculate the altitude of recharge basins. The isotopic gradient defined in this study is ?0.5 δ18O ‰/100 m.  相似文献   
97.
Abstract

We investigate the general methodology for an intensive development of coastal aquifers, described in a companion paper, through its application to the management of the Akrotiri aquifer, Cyprus. The Zakaki area of that aquifer, adjacent to Lemessos City, is managed such that it permits a fixed annual agricultural water demand to be met, as well as and a fraction of the water demand of Lemessos, which varies according to available surface water. Effluents of the Lemessos wastewater treatment plant are injected into the aquifer to counteract the seawater intrusion resulting from the increased pumping. The locations of pumping and injection wells are optimized based on least-cost, subject to meeting the demand. This strategy controls sea intrusion so effectively that desalting of only small volumes of slightly brackish groundwater is required over short times, while ~2.3 m3 of groundwater is produced for each 1 m3 of injected treated wastewater. The cost over the 20-year period 2000–2020 of operation is ~40 M€ and the unit production cost of potable water is under 0.2 €/m3. The comparison between the deterministic and stochastic analyses of the groundwater dynamics indicates the former as conservative, i.e. yielding higher groundwater salinity at the well. The Akrotiri case study shows that the proposed aquifer management scheme yields solutions that are preferable to the widely promoted seawater desalination, also considering the revenues from using the treated wastewater for irrigation.

Citation Koussis, A. D., Georgopoulou, E., Kotronarou, A., Mazi, K., Restrepo, P., Destouni, G., Prieto, C., Rodriguez, J. J., Rodriguez-Mirasol, J., Cordero, T., Ioannou, C., Georgiou, A., Schwartz, J. & Zacharias, I. (2010) Cost-efficient management of coastal aquifers via recharge with treated wastewater and desalination of brackish groundwater: application to the Akrotiri basin and aquifer, Cyprus. Hydrol. Sci. J. 55(7), 1234–1245.  相似文献   
98.
Abstract

Field-scale water balance is difficult to characterize because controls exerted by soils and vegetation are mostly inferred from local-scale measurements with relatively small support volumes. Eddy covariance flux and lysimeters have been used to infer and evaluate field-scale water balances because they have larger footprint areas than local soil moisture measurements. This study quantifies heterogeneity of soil deep drainage (D) in four 12.5-m2 repacked lysimeters, compares evapotranspiration from eddy covariance (ETEC) and mass balance residuals of lysimeters (ETwbLys), and models D to estimate groundwater recharge. Variation in measured D was attributed to redirection of snowmelt infiltration and differences in lysimeter hydraulic properties caused by surface soil treatment. During the growing seasons of 2010, 2011 and 2012, ETwbLys (278, 289 and 269 mm, respectively) was in good agreement with ETEC (298, 301 and 335 mm). Annual recharge estimated from modelled D was 486, 624 and 613 mm for three calendar years 2010, 2011 and 2012, respectively. In summary, lysimeter D and ETEC can be integrated to estimate and model groundwater recharge.
Editor D. Koutsoyiannis  相似文献   
99.
尹凤玲  张怀  石耀霖 《地球物理学报》2015,58(10):3649-3659
华北地区由于长期持续的地下水过量开采,导致了大面积地下水位大幅下降,引发地面塌陷、地下水质污染等一系列地质环境问题,这些现象早已为人们所熟知和关注.然而地下水位下降还会造成百米量级浅部地温及其梯度的变化,因此即使来自地球深部的大地热流密度没有变化,年度平均的从表浅部位通过地表实际传导进入大气的热流密度会减小,这是中外文献中尚未见讨论过的问题.我们通过数值模拟发现假定大地热流密度不变的条件下,华北数万平方公里地下水位下降会造成百米尺度内的地温降低,从而传入大气的热流密度降低40%以上,且会持续数百年以上的时间.这种长时间大范围的传导入大气的热流密度变化对环境会造成什么影响是一个十分值得关注的问题.这一预测在一定程度上得到了气象站地温观测数据的支持,但由于目前气象观测站只有3.2 m深度范围内的地温资料,累计不超过5、60年,中间还有10余年的间断,而且表浅深度地温受地表多种因素的影响也较大,这些资料难以对我们关心的地下水位下降引起流入大气的热流密度变化这一问题提供直接确凿的数据来进行分析,因此今后有必要开展对地下数十乃至数百米地温进行持续精确的监测工作.  相似文献   
100.
应用加卸载响应比的理论原理,对广东地下水位网的观测数据进行加卸载响应比计算,以广东及周边地区数次MS4.0级以上地震作为震例,提取可能的中期至短期的响应比异常变化,研究其异常特征以及与地震的对应关系。结果表明,在中强地震前响应比存在增大变化,大多数井的水位固体潮响应比在发震前1~4个月出现升高异常变化。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号