首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7646篇
  免费   1059篇
  国内免费   1205篇
测绘学   1745篇
大气科学   803篇
地球物理   1150篇
地质学   4239篇
海洋学   535篇
天文学   92篇
综合类   451篇
自然地理   895篇
  2024年   19篇
  2023年   86篇
  2022年   240篇
  2021年   257篇
  2020年   323篇
  2019年   342篇
  2018年   236篇
  2017年   392篇
  2016年   427篇
  2015年   357篇
  2014年   477篇
  2013年   573篇
  2012年   479篇
  2011年   484篇
  2010年   406篇
  2009年   458篇
  2008年   579篇
  2007年   544篇
  2006年   557篇
  2005年   379篇
  2004年   340篇
  2003年   272篇
  2002年   220篇
  2001年   184篇
  2000年   167篇
  1999年   151篇
  1998年   164篇
  1997年   130篇
  1996年   124篇
  1995年   104篇
  1994年   87篇
  1993年   76篇
  1992年   66篇
  1991年   33篇
  1990年   37篇
  1989年   23篇
  1988年   25篇
  1987年   16篇
  1986年   14篇
  1985年   13篇
  1984年   13篇
  1982年   7篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1975年   1篇
  1973年   5篇
  1972年   4篇
  1971年   3篇
  1954年   3篇
排序方式: 共有9910条查询结果,搜索用时 15 毫秒
141.
Much of southern and eastern Africa is semi-arid and heavily groundwater dependent. Borehole drilling commenced over a hundred years ago with magnetic and electrical resistivity surveys for borehole siting being introduced from 1936. Formalised training of hydrogeologists led in the 1970s to an almost standard approach to hydrogeological investigation and a period of stability followed, during which some major investigations were carried out. A period of decentralisation and fragmentation has since taken place in many parts of southern and eastern Africa, and groundwater monitoring and management are inadequate in many countries. All but six of the 14 SADC (Southern African Development Community) member states reportedly have an adequate monitoring network in place. However, groundwater demand is increasing and hydrogeologists need to promote the use of appropriate methodologies as an essential part of tackling the severe issues now facing the water sector in the region.  相似文献   
142.
This study was based on the analysis of isotopic compositions of hydrogen and oxygen in samples from precipitation, groundwater and stream water. In addition, parts of groundwater samples were dated by carbon-14 and tritium. These data are integrated to provide other views of the hydrologic cycle in the Hsinchu-Miaoli groundwater district. The groundwater district is principally composed of Pleistocene and Holocene aquifers. The Pleistocene aquifers are highly deformed by folding and faults into small sub-districts with areas of only tens of square kilometers. These aquifers are exclusively recharged by local precipitation. The Holocene aquifers cover narrow creek valleys, only tens of meters in thickness. The local meteoric water line (LMWL), constructed from rainfall samples in the Hsinchu Science Park, is described by the equation δD=8.02δ18O+10.16, which agrees with the global meteoric water line. In addition, the precipitation isotopic compositions can be categorized into two distinct end members: typhoon type and monsoon type. The groundwater isotopic compositions are perfectly located on an LMWL and can be considered a mixture of precipitations. Based on the mass balance of isotopic compositions of oxygen and hydrogen, infiltration is more active in the rainy season with depleted isotopic compositions. The amount of infiltration during May–September is roughly estimated to comprise at least 55% of the whole year’s recharge. The isotopic compositions of stream water are expressed by a regression equation: δD=7.61δ18O+9.62, which is similar to the LMWL. Although precipitation isotopic compositions are depleted during summer time, the isotopic compositions contrarily show an enriched trend in the upstream area. This is explained by the opposite altitude effect on isotopic compositions for typhoon-related precipitations.  相似文献   
143.
Tracing leachates at landfills is usually carried out using either geophysical methods or chemical analyses of groundwater. There are often problems with fingerprinting pollution sources or clarifying the spreading pattern due to a wide variety of possibilities giving similar anomalies. The aims of the project were to evaluate the advantages of combining results from multigeophysical modelling and statistical/chemical modelling in order to identify pollution sources and the spreading pattern and to test a new technique for chemical fingerprinting. The project was carried out at a landfill in central Sweden using geophysical measurements and modelling of CVES, GPR and VLF as well as chemical modelling using M3 (multivariate mixing and mass balance calculations). The results indicate that by combining geophysical modelling and chemical calculations, the possibilities of fingerprinting the origin of pollution as well as delineating the spreading pattern are significantly increased.  相似文献   
144.
Hydrologic time series of groundwater levels, streamflow, precipitation, and tree-ring indices from four alluvial basins in the southwestern United States were spectrally analyzed, and then frequency components were reconstructed to isolate variability due to climatic variations on four time scales. Reconstructed components (RCs), from each time series, were compared to climatic indices like the Pacific Decadal Oscillation (PDO), North American Monsoon (NAM), and El Niño-Southern Oscillation (ENSO), to reveal that as much as 80% of RC variation can be correlated with climate variations on corresponding time scales. In most cases, the hydrologic RCs lag behind the climate indices by 1–36 months. In all four basins, PDO-like components were the largest contributors to cyclic hydrologic variability. Generally, California time series have more variation associated with PDO and ENSO than the Arizona series, and Arizona basins have more variation associated with NAM. ENSO cycles were present in all four basins but were the largest relative contributors in southeastern Arizona. Groundwater levels show a wide range of climate responses that can be correlated from well to well in the various basins, with climate responses found in unconfined and confined aquifers from pumping centers to mountain fronts.  相似文献   
145.
The increasing natural disasters, especially floods during the last quarter century, are raising the economic losses in Taiwan. The most severe hazard in Taiwan is flooding induced by typhoons and storms in summer and autumn. By comparing the rivers around the world, the ones in Taiwan have the steepest slopes, the largest discharge per unit drainage area, and the shortest time of concentrations. Rapid urbanization without proper land uses managements usually worsen the flood problems. Consequently, flood hazards mitigation has become the most essential task for Taiwan to deal with. Although the government keeps improving flood defense structures, the flood damage grows continuously. In this article, possible flood mitigation strategies are identified for coping with complex environmental and social decisions with flood risk involved.  相似文献   
146.
One of the most significant water resources in the Republic of Croatia is the catchment area of the Kupa River, located in the region bordering the Republic of Slovenia. About 88% of the total amount of water in this catchment originates in Croatia and just 12% from Slovenia; therefore, the largest part of the catchment area (about 1000 km2) is on the Croatian side of the border. It is a typical karst area of the Dinarides with aquifers characterized by a relatively rapid water exchange, high groundwater flow velocities and aquifers open to human impact from the surface. Consequently, the aquifers are highly vulnerable and at risk. Due to the availability of large quantities of high-quality spring water (about 6 m3/s), the entire area has a strategic importance within the context of any future development strategy pertaining to the western part of Croatia. The catchment area on the Croatian side was investigated using a wide range of research methods that included a classical hydrogeological approach, the detailed hydrologic calculation of water balance to the hydrogeochemical analyses and modelling. The objective was to determine protection zones and protection measures for the whole area. The difficulties are increased due to the fact that the karst catchment area is crossed by major traffic corridors, oil pipelines and a railway and that many settlements and a highly developed wood industry are present. The combination of protecting water resources with adequate prevention measures and necessary remedial activities that should satisfy the very strict requirements necessary for the protection of the karst aquifers while still allowing for present and future human activities is difficult – but not impossible – to achieve. One good example is the present highway with a closed dewatering system and waste water treatment before the water passes into the karst underground system.  相似文献   
147.
Declining water level trends and yields of wells, deterioration of groundwater quality and drying up of shallow wells are common in many parts of India. This is mainly attributed to the recurrence of drought years, over exploitation of groundwater, increase in the number of groundwater structures and explosion of population. In this subcontinent, the saving of water has to be done on the days it rains. India receives much of its rainfall in just 100 h in a year mostly during the monsoon period. If this water is not captured or stored, the rest of the year experiences a precarious situation manifest in water scarcity. The main objective behind the construction of subsurface dams in the Swarnamukhi River basin was to harvest the base flow infiltrating into sandy alluvium as waste to the sea and thereby to increase groundwater potential for meeting future water demands. An analysis of hydrographs of piezometers of four subsurface dams, monitored during October 2001–December 2002, reveals that there is an average rise of 1.44 m in post-monsoon and 1.80 m in the pre-monsoon period after the subsurface dams were constructed. Further, during the pre-monsoon month of June, much before construction of subsurface dams in October 2001, the water level was found fluctuating in the range of 3.1–10 m, in contrast to the fluctuation ranging from 0.4 to 3.1 m during the period following the construction of dams. Hence, the planning of rainwater harvesting structures entails thorough scientific investigations for identifying the most suitable locations for subsurface dams.  相似文献   
148.
Eighty-seven groundwater samples have been collected from a mountainous region (Alvand, Iran) for hydrochemical investigations to understand the sources of dissolved ions and assess the chemical quality of the groundwater. Most water quality parameters are within World Health Organization acceptable limits set for drinking water. The least mineralized water is found closest to the main recharge zones and the salinity of water increased towards the north of the basin. The most prevalent water type is Ca–HCO3 followed by water types Ca–NO3, Ca–Cl, Ca–SO4 and Mg–HCO3. The Ca–NO3 water type is associated with high nitrate pollution. Agricultural and industrial activities were associated with elevated level of NO3. Mineral dissolution/weathering of evaporites dominates the major element hydrochemistry of the area. Chemical properties of groundwater in Alvand region are controlled both by natural geochemical processes and anthropogenic activities.  相似文献   
149.
A new approach to the method of artificial upraising of the water outlet point, for management and development of brackish karst springs, uses the MODKARST model. Brackish karst springs simulation can be used to estimate the necessary upraising of the spring elevation, so that sea-water intrusion is blocked. The consequent freshwater loss to the sea, due to this upraising, can also be estimated. The method has been applied to the periodically brackish karst Almiros spring at Heraklion of Crete, Greece. The spring simulation showed that the sea-water intrusion could be prevented through an artificial upraising of the water-outlet point, realized by the construction of a dam. The exact upraising has been estimated. Freshwater loss to the sea because of this upraising has also been estimated. The model could also be used as a tool for the management of the spring. For example, it was used to assess management options for the spring during the depletion period of the year 1994. The best scenario for the development of the spring during this period has been estimated.  相似文献   
150.
This paper addresses the need for an efficient and cost-effective methodology for preparing flood hazard maps in data poor countries, particularly those under a monsoon regime where floods pose a recurrent danger. Taking Gangetic West Bengal, India, as an example and using available historical data from government agencies, the study compiled a regional map indicating hazard prone subregional areas for further detailed investigation, thereby isolating actual high risk localities. Using a GIS (Geographical Information System), a composite hazard index was devised incorporating variables of flood frequency, population density, transportation networks, access to potable water, and availability of high ground and maximum risk zones were mapped accordingly. A digital elevation model derived from high resolution imagery available in the public domain was used to calculate elevated areas suitable for temporary shelter during a flood. Selecting administrative units of analysis at the lowest possible scales – rural development blocks (regional) and revenue villages (subregional) – also ensures that hazard mapping is prepared in line with the existing rural planning and administrative authorities responsible for remedial intervention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号