首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1975篇
  免费   252篇
  国内免费   150篇
测绘学   19篇
大气科学   10篇
地球物理   445篇
地质学   1647篇
海洋学   118篇
天文学   1篇
综合类   63篇
自然地理   74篇
  2023年   7篇
  2022年   26篇
  2021年   35篇
  2020年   39篇
  2019年   42篇
  2018年   30篇
  2017年   41篇
  2016年   73篇
  2015年   73篇
  2014年   93篇
  2013年   64篇
  2012年   50篇
  2011年   69篇
  2010年   75篇
  2009年   168篇
  2008年   224篇
  2007年   187篇
  2006年   204篇
  2005年   136篇
  2004年   115篇
  2003年   78篇
  2002年   71篇
  2001年   48篇
  2000年   50篇
  1999年   42篇
  1998年   45篇
  1997年   42篇
  1996年   41篇
  1995年   44篇
  1994年   36篇
  1993年   29篇
  1992年   25篇
  1991年   9篇
  1990年   11篇
  1989年   6篇
  1988年   11篇
  1987年   5篇
  1986年   2篇
  1985年   6篇
  1984年   9篇
  1983年   3篇
  1982年   7篇
  1981年   4篇
  1980年   1篇
  1954年   1篇
排序方式: 共有2377条查询结果,搜索用时 553 毫秒
141.
The concentration of nutrients in groundwater acts as an indicator to identify the influence of agricultural activities on the shallow subsurface environment. Hence, the present study was carried out to assess nutrient concentration (nitrate, phosphate and potassium) and understand its spatial and seasonal variations in the groundwater of Palar and Cheyyar River basin, Tamil Nadu, India. The groundwater samples collected from 43 wells were analyzed for nutrients once a month from January 1998 to June 1999. Results of the study suggested that agricultural activities, including application of fertilizers, soil mineralization processes and irrigation return flow, are major processes regulating the nutrients chemistry in the groundwater of this region. Groundwater in the sedimentary formation has comparatively higher concentration of nutrients than the groundwater in hard rock formations, which seems to be due to the adsorption of nutrients by the weathered rock materials. The seasonal water level fluctuation shows that rising water level increases nutrients concentration in groundwater due to the agriculture related activities. The results also indicate that nitrate and potassium concentrations are within the recommended drinking water limits, whereas phosphate concentration exceeds its drinking water limit and 35% of the samples are unsuitable for drinking purposes.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
142.
A simple, physically based method is developed in this paper to assist in the allocation of areas with high groundwater potential and for the determination of maximum allowed pumping rate to ensure proper groundwater management. This method utilizes the aquifer physical properties as well as GIS technology to accomplish this purpose. The design of this method was considered to be applicable in areas with little data, such as in most arid regions. This technique was applied to a catchment in an arid environment where qualitative as well as quantitative analyses of the results were undertaken. Locations of available groundwater and rates of maximum allowable pumping were compared with observations and experiments in the field and a good agreement was found. It was concluded that the best groundwater location was in the alluvial area, which represents only 16% of the total aquifer, which is a typical case in arid region catchments. The rate of maximum pumping was estimated to be 65 m3/h. However, to benefit 55% of the area, the maximum pumping rate should only be 40 m3/h with an average rate throughout the area (55%) of about 24 m3/h.This revised version was published online in December 2004 with corrections to the category.  相似文献   
143.
144.
Rainfall is the main source of groundwater recharge in the Gaza Strip area in Palestine. The area is located in the semi-arid zone and there is no source of recharge other than rainfall. Estimation of groundwater recharge from rainfall is not an easy task since it depends on many uncertain parameters. The cumulative rainfall departure (CRD) method, which depends on the water balance principle, was used in this study to estimate the net groundwater recharge from rainfall. This method does not require much data as is the case with other classical recharge estimation methods. The CRD method was carried out using optimisation approach to minimise the root mean square error (RMSE) between the measured and the simulated groundwater head. The results of this method were compared with the results of other recharge estimation methods from literature. It was found that the results of the CRD method are very close to the results of the other methods, but with less data requirements and greater ease of application. Based on the CRD method, the annual amount of groundwater recharge from rainfall in the Gaza Strip is about 43 million m3. An erratum to this article can be found at  相似文献   
145.
Groundwater depletion: A global problem   总被引:19,自引:6,他引:19  
  相似文献   
146.
A hydrochemical investigation was conducted in the Ejina Basin to identify the hydrochemical characteristics and the salinity of groundwater. The results indicate that groundwater in the area is brackish and are significantly zonation in salinity and water types from the recharge area to the discharge area. The ionic ration plot and saturation index (SI) calculation suggest that the silicate rock weathering and evaporation deposition are the dominant processes that determine the major ionic composition in the study area. Most of the stable isotope δ18O and δD compositions in the groundwater is a meteoric water feature, indicating that the groundwater mainly sources from meteoric water and most groundwater undergoes a long history of evaporation. Based on radioactive isotope tritium (3H) analysis, the groundwater ages were approximately estimated in different aquifers. The groundwater age ranges from less than 5 years, between 5 years and 50 years, and more than 50 years. Within 1 km of the river water influence zone, the groundwater recharges from recent Heihe river water and the groundwater age is about less than 5 years in shallow aquifer. From 1 km to 10 km of the river water influence zone, the groundwater sources from the mixture waters and the groundwater age is between 5 years and 50 years in shallow aquifer. The groundwater age is more than 50 years in deep confined aquifer.  相似文献   
147.
148.
149.
This study investigated the potential for the uranium mineral carnotite (K2(UO2)2(VO4)2·3H2O) to precipitate from evaporating groundwater in the Texas Panhandle region of the United States. The evolution of groundwater chemistry during evaporation was modeled with the USGS geochemical code PHREEQC using water-quality data from 100 groundwater wells downloaded from the USGS National Water Information System (NWIS) database. While most modeled groundwater compositions precipitated calcite upon evaporation, not all groundwater became saturated with respect to carnotite with the system open to CO2. Thus, the formation of calcite is not a necessary condition for carnotite to form. Rather, the determining factor in achieving carnotite saturation was the evolution of groundwater chemistry during evaporation following calcite precipitation. Modeling in this study showed that if the initial major-ion groundwater composition was dominated by calcium-magnesium-sulfate (>70 precent Ca + Mg and >50 percent SO4 + Cl) or calcium-magnesium-bicarbonate (>70 percent Ca + Mg and <70 percent HCO3 + CO3) and following the precipitation of calcite, the concentration of calcium was greater than the carbonate alkalinity (2mCa+2 > mHCO3 + 2mCO3−2) carnotite saturation was achieved. If, however, the initial major-ion groundwater composition is sodium-bicarbonate (varying amounts of Na, 40–100 percent Na), calcium-sodium-sulfate, or calcium-magnesium-bicarbonate composition (>70 percent HCO3 + CO3) and following the precipitation of calcite, the concentration of calcium was less than the carbonate alkalinity (2mCa+2 < mHCO3- + 2mCO3−2) carnotite saturation was not achieved. In systems open to CO2, carnotite saturation occurred in most samples in evaporation amounts ranging from 95 percent to 99 percent with the partial pressure of CO2 ranging from 10−3.5 to 10−2.5 atm. Carnotite saturation occurred in a few samples in evaporation amounts ranging from 98 percent to 99 percent with the partial pressure of CO2 equal to 10−2.0 atm. Carnotite saturation did not occur in any groundwater with the system closed to CO2.  相似文献   
150.
本文应用污染指数法,对北方某经济开发区及周边地下水水质进行了污染评价,结果表明研究区地下水水质以轻污染和中污染为主,局部地区出现较重污染,主要指标为硝酸盐氮、三氯甲烷和三氯乙烯。通过对工业废水、再生水、河水水质的检测,发现研究区地表水水质与污水处理厂再生水排放密切相关,地下水污染很可能与开发区企业排污有关。由于开发区所处位置的环境敏感性和脆弱性,建议今后在开发区及附近继续开展相关研究,进一步查明地下水的硝酸盐氮及有机污染物来源、污染途径,建立完善的监测体系,以便及时切断污染源,保障城市及当地供水安全。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号