首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1032篇
  免费   165篇
  国内免费   52篇
测绘学   43篇
大气科学   78篇
地球物理   659篇
地质学   348篇
海洋学   52篇
天文学   18篇
综合类   25篇
自然地理   26篇
  2024年   2篇
  2023年   3篇
  2022年   7篇
  2021年   13篇
  2020年   20篇
  2019年   27篇
  2018年   33篇
  2017年   27篇
  2016年   36篇
  2015年   33篇
  2014年   60篇
  2013年   38篇
  2012年   38篇
  2011年   76篇
  2010年   46篇
  2009年   71篇
  2008年   71篇
  2007年   69篇
  2006年   60篇
  2005年   54篇
  2004年   60篇
  2003年   36篇
  2002年   56篇
  2001年   28篇
  2000年   43篇
  1999年   40篇
  1998年   40篇
  1997年   25篇
  1996年   35篇
  1995年   21篇
  1994年   21篇
  1993年   16篇
  1992年   8篇
  1991年   4篇
  1990年   7篇
  1989年   8篇
  1988年   7篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1980年   1篇
  1975年   1篇
  1954年   1篇
排序方式: 共有1249条查询结果,搜索用时 46 毫秒
191.
The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated, and a wake oscillator model for the dynamic response prediction is proposed. An approach is applied to calibrate the empirical parameters in the present model; the numerical and experimental results are compared to validate the proposed model. It can be found that the present prediction model is accurate and sufficiently simple to be easily applied in practice.  相似文献   
192.
In this paper, a series of field experiments were carried out to investigate the active vibration isolation for a surface foundation using horizontal wave impedance block (WIB) in a multilayered ground under vertical excitations. The velocity amplitude of ground vibration was measured and the root-mean-square (RMS) velocity is used to evaluate the vibration mitigation effect of the WIB. The influences of the size, the embedded depth and the shear modulus of the WIB on the vibration mitigation were also systematically examined under different loading conditions. The experimental results convincingly indicate that WIB is effective to reduce the ground vibration, especially at high excitation frequencies. The vibration mitigation effect of the WIB would be improved when its size and shear modulus increase or the embedded depth decreases. The results also showed that the WIB may amplify rather than reduce the ground vibration when its shear modulus is smaller or the embedded depth is larger than a threshold value. Meanwhile, an improved 3D semi-analytical boundary element method (BEM) combined with a thin layer method (TLM) was proposed to account for the rectangular shape of the used WIB and the laminated characteristics of the actual ground condition in analyzing the vibration mitigation of machine foundations. Comparisons between the field experiments and the numerical analyses were also made to validate the proposed BEM.  相似文献   
193.
Recent advances in railway-induced ground vibrations showed that the track/soil interaction plays an important role in the low frequency range. This paper contributes to the numerical analysis of train/track/foundation dynamics by presenting the accuracy of a coupled lumped mass (CLM) model devoted to the railway foundations and to the track/soil coupling. Following a summary of the background and the advantages of the CLM model, the coupling strategy is quantified through two application cases. Firstly, the dynamic track deflection is calculated for different railway lines considering various degrees of complexities of foundations. Then, the foundation responses are compared depending on whether detailed coupling is introduced or not. The benefit of the proposed model is emphasized by presenting free-field ground vibration responses generated by a tram and a high-speed train, obtained by a revisited two-step prediction model developed by the authors.  相似文献   
194.
The objective of the study presented herein is to develop an understanding of the predictive trends of four different liquefaction severity index frameworks, with emphasis on the utility of the frameworks for assessing liquefaction vulnerability in Christchurch, New Zealand. Liquefaction induced land damage was widespread following the four major earthquakes in Christchurch (Mw 5.9–7.1) between 4 September 2010 and 23 December 2011. As part of the rebuilding effort, a major focus, to date, has been on assessing/developing approaches for evaluating vulnerability to liquefaction induced damage in future events. The four liquefaction severity index frameworks that are evaluated herein are: the one-dimensional volumetric reconsolidation settlement (SV1D), the Liquefaction Potential Index (LPI), and two new liquefaction severity indices developed following the major earthquakes in Christchurch, namely the Ishihara inspired LPI (LPIISH) and the Liquefaction Severity Number (LSN). To assess the predictive trends of the four severity index frameworks, the H1H2 boundary curves developed by Ishihara (1985) are used as a reference of comparison. In large part, the severity index frameworks serve the same purpose as the Ishihara boundary curves, but they alleviate some of the difficulties in implementing the Ishihara boundary curves for assessing the highly stratified soil profiles that underlie much of Christchurch. A parametric study was performed wherein relatively simple soil profiles are evaluated using all the procedures and contour plots of calculated SV1D, LPI, LPIISH, and LSN values were superimposed onto the Ishihara boundary curves. The results indicate that the LPIISH and LSN indices yield similar trends as the Ishihara boundary curves, whereas the SV1D and LPI indices do not. Furthermore, little field data is available to assess the severity indices for the scenarios where the trends in the LPIISH and LSN indices differ.  相似文献   
195.
This paper deals with the vibration control of existing structures forced by earthquake induced ground motion. To this aim it is proposed for the first time to exploit the structure–soil–structure mechanism to develop a device, hosted in the soil but detached from the structure, able to absorb part of the seismic energy so to reduce the vibration of neighbourhood structures. The design of the device is herein addressed to protect monopile structures from earthquake induced ground motion. By modelling the ground motion as zero-mean quasi-stationary response-spectrum-compatible Gaussian stochastic process, the soil as visco-elastic medium and the target monopiled-structure as a linear behaving structure the device, herein called Vibrating Barrier (ViBa), has been designed through an optimization procedure. Various numerical and experimental results are produced to show the effectiveness of the ViBa. Remarkably, a significant reduction of the structural response up to 44% has been achieved.  相似文献   
196.
An isogeometric analysis (IGA) based numerical model is presented for simulation of thermo-hydro-mechanically (THM) coupled processes in ground freezing. The momentum, mass and energy conservation equations are derived based on porous media theory. The governing equations are supplemented by a saturation curve, a hydraulic conductivity model and constitutive equations. Variational and Galerkin formulation results in a highly nonlinear system of equations, which are solved using Newton-Raphson iteration. Numerical examples on isothermal consolidation in plane strain, one-dimensional freezing and heave due to a chilled pipeline are presented. Reasonably good agreements were observed between the IGA based heave simulations and experimental results.  相似文献   
197.
利用MERIS水汽数据改正ASAR干涉图中的大气影响   总被引:5,自引:2,他引:3       下载免费PDF全文
大气对流层对雷达信号的传播延迟是制约重复轨道InSAR高精度测量应用的重要因素之一.本文描述了MERIS水汽数据用于ASAR干涉图大气改正的方法;并以美国南加州地区为例,选取4对ENVISAT ASAR数据进行了大气改正的研究.结果显示对这4幅干涉图,经过MERIS水汽数据改正后InSAR与GPS差异的RMS分别〖JP2〗降低了41.7%,65.2%,19.3%和39.4%.平均改善程度达41.4%.更重要的是,经过MERIS水汽改正后,从2005~2007年〖JP〗干涉图和2004~2007年干涉图中,能清楚地识别出三处形变最明显的区域:Long Beach-Santa Ana 盆地、Pomona-Ontario和San Bernardino,其形变速率从-8 mm/a到-28 mm/a,大部分在-20 mm/a左右,与这些地区2003年以前的历史形变速率基本一致.因此,采用无云条件下的MERIS水蒸汽数据改正同步获取的ASAR干涉图,可以显著地降低大气水汽对干涉图相位的影响,从而更真实地反映地表形变等地球物理信号.  相似文献   
198.
An analytical approach is used to study the torsional vibrations of a rigid circular foundation resting on saturated soil to obliquely incident SH waves. Biot’s poroelastic dynamic theory is considered to characterize the saturated soil below the foundation, which is solved by Hankel transform later. In order to consider the scattering phenomena caused by the existence of the foundation, the total wave field in soil is classified into free-field, rigid-body scattering field and radiation scattering field. According to the classification of wave field and the mixed boundary-value conditions between the soil and the foundation, torsional vibrations of the foundation are formulated in two sets of dual integral equations. Then, the dual integral equations are reduced to Fredholm integral equation of the second kind to be solved. Combining with the dynamic equilibrium equations of the foundation, the expressions for the torsional vibrations of the foundation are obtained. Numerical results are presented to demonstrate the influence of excitation frequency, incident angle, the torsional inertia moment of the foundation and permeability of the saturated half-space on the torsional vibrations of the foundation.  相似文献   
199.
系统整理分析了1983—2008年乾陵台地倾斜仪记录到的暂态异常图像,发现其与周围4000km以内6.5级以上强震有一定的对应关系。异常图像以渐变、突变阶跃、畸变及脉动为主要特征,异常出现时间为震前0-40天,主要集中在震前4天。  相似文献   
200.
The 2.5D finite/infinite element approach is adopted to study wave propagation problems caused by underground moving trains. The irregularities of the near field, including the tunnel structure and parts of the soil, are modeled by the finite elements, and the wave propagation properties of the far field extending to infinity are modeled by the infinite elements. One particular feature of the 2.5D approach is that it enables the computation of the three-dimensional response of the half-space, taking into account the load-moving effect, using only a two-dimensional profile. Although the 2.5D finite/infinite element approach shows a great advantage in studying the wave propagation caused by moving trains, attention should be given to the calculation aspects, such as the rules for mesh establishment, in order to avoid producing inaccurate or erroneous results. In this paper, some essential points for consideration in analysis are highlighted, along with techniques to enhance the speed of the calculations. All these observations should prove useful in making the 2.5D finite/infinite element approach an effective one.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号