首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   10篇
  国内免费   4篇
大气科学   1篇
地球物理   56篇
地质学   39篇
海洋学   9篇
综合类   2篇
自然地理   15篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   7篇
  2013年   4篇
  2012年   6篇
  2011年   7篇
  2010年   6篇
  2009年   6篇
  2008年   5篇
  2007年   6篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1995年   3篇
  1994年   3篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1987年   4篇
  1986年   3篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
排序方式: 共有122条查询结果,搜索用时 281 毫秒
111.
One of the major problems of shingle beach dynamics is the method by which coarse gravel is transferred from beach face to storm beach, the latter often lying several metres above high spring tidal levels. The mechanism which is usually proposed, cites the action of plunging breakers as being central to this problem of sediment transfer. However, the nature of net residual fluid force of plunging breakers is deemed unsatisfactory for any substantial upbeach (onshore) sediment transport during storm conditions on gravel beaches. A mechanism is proposed by which high still water levels due to high astronomical tides, onshore storm force winds and allied wave surge, promote shoaling characteristics and beach profile changes which are conducive to spilling breaker development at tidal extremities. It is the net onshore fluid force vector of the spilling breaker overtopping the beach crest which may be the cause of extreme sedimentation events on the storm beach. An example of such sediment transfer is given for a known storm beach sedimentation event at Llanrhystyd gravel beach, West Wales, during February 1974. Process variables were monitored on several days allowing the use of an inshore breaker steepness criterion, to indicate positions in the tidal regime where plunging breakers give way to spilling forms. This example serves to suggest that more attention should be given to the nature and characteristics of shoaling waves, especially in respect of breaker type, when examining problems of shingle beach dynamics and sedimentation.  相似文献   
112.
The paper presents a numerical movable-bed channel capable of simulating three-dimensional motions of flows and gravel particles in different shapes. At first, the numerical channel was tested against results of fixed-bed channel experiments in which gravel particles were transported. Simulated particle motions were validated in comparison with those in the laboratory experiment. Next, numerical movable-bed experiments with sphere particles and gravel particles were conducted. The results of these experiments clearly elucidated the difference in motion between the large and the small particles, effects of shapes of gravel particles on sediment-transport rates, and hydrodynamic forces and contact forces at incipient motion and at settling.  相似文献   
113.
Existing resistance formulas produce a wide range of friction-factor estimates for gravel bed streams. The purpose of this paper is to develop a reliable resistance formula in terms of the Darcy-Weisbach friction factor f Published data were screened and used to establish the formula. The existing formulas have considered thatfis a function of relative roughness D84/R only, where R is the hydraulic radius and 1984 is the particle size referred to the intermediate diameter that equals or exceeds that of 84 percent of bed sediments. In this paper, f is considered as a ftmction of Froude number in addition to the relative roughness, ffor D84/R〉l displays a different trend than that for Dsn/R〈l perhaps due to the invalid assumption of a logarithmic velocity distribution for D84/R〉l. Anfformula for Dsa/R〈l has been established.  相似文献   
114.
The equation most commonly used to describe the bay planform was proposed by Hsu and Evans (1989) and it was obtained through empirical analysis of sand beach planforms.In the last decade interest in gravel sediments increased owing to their greater stability on beaches, compared with sand sediments. Due to the differences between the morphodynamics of sand and gravel beaches, which is strictly influenced by their different hydraulic characteristics, it was necessary to create a predictive instrument for this beach type as well.Therefore, in this study the standard Hsu and Evans equation (1989) was modified in order to make it applicable not only to sand beaches but also to gravel beaches. The shoreline was computed according to a parabolic model in polar coordinates whose coefficients are considered linearly dependent on the wave direction and related to the beach type. The estimation of the free parameters of the model was performed according to a statistical analysis of a shorelines data set of Mediterranean sand and gravel embayed beaches.  相似文献   
115.
A recent acoustic instrument (Gravel Transport Sensor, GTS) was tested for predicting sediment transport rate (bed load rate) in gravel bed streams. The GTS operation is based on the particle collision theory of submerged obstacles in fluids. When particles collide with the GTS cylinder their momentum is recorded in the form of ping rates. The GTS is attractive for further consideration here because of its potential to provide continuous unattended local bed load measurements, especially in areas found in streams that access may be difficult under extreme conditions. Laboratory experiments coupled with numerical simulations for the same flow conditions were performed in order to determine the conditions under which particles of different size will hit the GTS cylinder and be able to register a ping rate. The GTS was able to detect the number of particles with diameter in the range of 15.9 to 25.4 mm, with reasonable accuracy, if the applied Shields effective stress τ*e = τ* - τ*cr was in the range of 0.006 to 0.015. A drawback of the tested prototype GTS, however, was that it exerted increased resistance on the incoming particles. The added drag effects increased the overall resistance that was exerted by the flow on particles and thus increased the likelihood that particles will rest in the ambient region of the cylinder instead of hitting it. Numerical simulation of the flow around the GTS cylinder revealed that changing the prototype geometry from cylindrical to ellipsoid or rhomboid will increase the likelihood of the particles hitting the instrument under the same flow conditions failed by the original tested GTS cylinder.  相似文献   
116.
The suitability of a numerical Boussinesq aquifer model for representing groundwater dynamics in a fluvial island surrounded by a regulated river is assessed and the model is used to compare exchange fluxes for varying configurations of island hydraulic conductivity (K) and diffusivity. The model results are qualitatively similar to field observations of the water table although there is obvious dissimilarity between modeled and observed heads suggesting that a Boussinesq aquifer model may not be the best option for representing the island. Nonetheless, the simulations show that pronounced ridges and valleys form in the water table and that their spatial configuration may change drastically with small variations in diffusivity. Stage fluctuations significantly increase exchange flux across the island relative to the case where stage is constant. The flux increases non-linearly when island K is low but then becomes quasi-linearly dependent on K with further increases in K. Regulated river stage fluctuations due to dams significantly affect surface water–groundwater interactions between a fluvial island and a river. This deserves further inquiry for both scientific and management reasons.  相似文献   
117.
Georges Bank is one of the world’s most productive marine ecosystems, but the lack of accurate broad-scale sediment maps presently limits habitat assessments and spatial fisheries management. From 1999 to 2009 we surveyed 36,669 km2 of Georges Bank using 2.8 and 0.6 m2 quadrats viewed with live underwater video (video quadrats). The sediment types observed in 61,604 quadrats were used to map and evaluate spatial structure of local surficial sediment coarseness, dominance, heterogeneity, and maximum size characteristics at a 1 km2 spatial resolution. Sand dominated sediment covered 62% of the study area, and there was a logarithmic decline in coverage by larger, coarser and more heterogeneous sediments. Gravel dominated sediments covered 38% of the study area and were more than twice as abundant as previously estimated. A 12,890 km2 swath of gravel dominated seabed stretched from Cape Cod to northeastern Georges Bank consistent with estimates of prehistoric glacial extent. Within the swath there were 14 large gravel outcrops (15–2743 km2) . This work increases the spatial resolution of sediment information available for habitat assessments and spatial fisheries management on Georges Bank by two orders of magnitude. The four sediment characteristics we evaluated support further detailed investigations of the Bank’s benthos, including the influences of surficial sediment characteristics on species and community distributions, and more spatially accurate estimates of seabed roughness. Finally, this work demonstrates the use of video quadrats as an alternative to traditional grab sampling and modern acoustic sampling for continental shelf-scale mapping.  相似文献   
118.
We have identified numerous well-preserved elutriation and fluidization structures probably induced by liquefaction in Quaternary gravels and gravelly sediments of braided fluvial channel deposits in the Rio Grande do Norte and Ceará states, northeastern Brazil. They show evidence of upward-directed water escape after sediment deposition and before sediment compaction. Among the several types of structures observed, the most frequent are pillars, pockets and dikes. These structures range in width from a few centimeters to as much as 4 m, and in height from 60 cm to 4 m. Dikes, pillars and pockets are systematically associated. Clastic dikes vented large quantities of sand to the upper layers or the surface; pebbles and cobbles from the host rock sank into the dikes and formed pillars and pockets. Pockets form the root part; pillars form the intermediate part and dike, the upper part of the composite structure. The morphology of the structures in sectional and plan views indicates a 3D geometry composed of a tabular dike and pillar that present a downward continuous transition to a bowl-shaped pocket. This “stratigraphy” of liquefaction features is different from that usually presented in the current literature.

Field data suggest that both the location and the geometry of the features were controlled by sedimentary properties rather than joints and small faults. The size and abundance of these features suggest that they were formed by great events rather than localized mechanisms. Field evidence also indicates that these features are the product of fluidization and elutriation and may have been induced by liquefaction processes associated with seismic shaking. A nonseismic origin related to elutriation processes, however, cannot be ruled out for some of the features.  相似文献   

119.
Dungeness Foreland is a large sand and gravel barrier located in the eastern English Channel that during the last 5000 years has demonstrated remarkable geomorphological resilience in accommodating changes in relative sea-level, storm magnitude and frequency, variations in sediment supply as well as significant changes in back-barrier sedimentation. In this paper we develop a new palaeogeographic model for this depositional complex using a large dataset of recently acquired litho-, bio- and chrono-stratigraphic data. Our analysis shows how, over the last 2000 years, three large tidal inlets have influenced the pattern of back-barrier inundation and sedimentation, and controlled the stability and evolution of the barrier by determining the location of cross-shore sediment and water exchange, thereby moderating sediment supply and its distribution. The sheer size of the foreland has contributed in part to its resilience, with an abundant supply of sediment always available for ready redistribution. A second reason for the landform's resilience is the repeated ability of the tidal inlets to narrow and then close, effectively healing successive breaches by back-barrier sedimentation and ebb- and/or flood-tidal delta development. Humans emerge as key agents of change, especially through the process of reclamation which from the Saxon period onwards has modified the back-barrier tidal prism and promoted repeated episodes of fine-grained sedimentation and channel/inlet infill and closure. Our palaeogeographic reconstructions show that large barriers such as Dungeness Foreland can survive repeated “catastrophic” breaches, especially where tidal inlets are able to assist the recovery process by raising the elevation of the back-barrier area by intertidal sedimentation. This research leads us to reflect on the concept of “coastal resilience” which, we conclude, means little without a clearly defined spatial and temporal framework. At a macro-scale, the structure as a whole entered a phase of recycling and rapid progradation in response to changing sediment budget and coastal dynamics about 2000 years ago. However, at smaller spatial and temporal scales, barrier inlet dynamics have been associated with the initiation, stabilisation and breakdown of individual beaches and complexes of beaches. We therefore envisage multiple scales of “resilience” operating simultaneously across the complex, responding to different forcing agents with particular magnitudes and frequencies.  相似文献   
120.
Excessive sedimentation in mountain stream ecosystems is a critical environmental problem due to the clogging of streambeds by sediment particles within the hyporheic zone,with detrimental effects on fish spawning habitat.In this research,the effects of an array of boulders in regulating the intrusion of incoming sand within a gravel substrate were evaluated by performing detailed experiments in a laboratory flume.A unique experimental setup and two different sampling techniques were utilized for measuring the infiltrated sand within the gravel bed under two bed shear stress conditions(moderate vs.high).For comparison purposes,experiments were performed without and with the presence of partially submerged to the flow(protruding) boulders,which is typical for the average flow conditions found in mountain streams.Results indicated that sand infiltrated primarily in the upper part of the gravel bed creating a surface seal which hindered the penetration of sand particles deeper into the bed.An exponential decrease of the amount of the infiltrated sand within the hyporheic zone was observed in all experiments regardless of the presence of boulders.However,the presence of boulders promoted sediment intrusion of sand particles especially for the moderate applied bed shear stress condition,since the total amount of the infiltrated sand was found to be on average 44% greater whenboulders were present.The findings from this study can provide additional insight regarding the role of boulders on promoting downwelling of flow and sediment within the gravel substrate with potential effects on fish habitat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号