首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   21篇
  国内免费   117篇
地球物理   9篇
地质学   274篇
综合类   5篇
自然地理   14篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   6篇
  2020年   2篇
  2019年   5篇
  2018年   11篇
  2017年   3篇
  2016年   12篇
  2015年   6篇
  2014年   11篇
  2013年   11篇
  2012年   18篇
  2011年   16篇
  2010年   4篇
  2009年   14篇
  2008年   14篇
  2007年   11篇
  2006年   20篇
  2005年   14篇
  2004年   16篇
  2003年   13篇
  2002年   7篇
  2001年   8篇
  2000年   7篇
  1999年   7篇
  1998年   5篇
  1997年   9篇
  1996年   10篇
  1995年   6篇
  1994年   10篇
  1993年   2篇
  1992年   4篇
  1991年   7篇
  1990年   1篇
  1988年   2篇
  1983年   1篇
排序方式: 共有302条查询结果,搜索用时 359 毫秒
171.
冀东地区新太古代麻粒岩相变质作用及其大地构造意义   总被引:8,自引:7,他引:1  
魏春景 《岩石学报》2018,34(4):895-912
冀东地区的早前寒武纪基底保留有太古宙克拉通普遍发育的"穹窿-龙骨构造",如卢龙-双山子表壳岩系呈近南北向带状分布于以TTG片麻岩为主构成的太平寨卵形构造域、迁安片麻岩穹窿和安子岭片麻岩穹窿之间,洒河桥线性构造带呈北东向切割太古宙构造线分布。在太平寨卵形域和洒河桥线性带中常见有零散分布的麻粒岩相表壳岩块体和古元古代变质基性岩墙。表壳岩块体包括基性和泥砂质麻粒岩和BIF型铁矿等,变质基性岩墙也发育高压麻粒岩相组合,变质锆石年龄为~1.81Ga。本文总结了近年来对该区麻粒岩的研究进展。太平寨卵形域中的基性麻粒岩以中粒二辉麻粒岩为主,有些样品的角闪石周围出现叠加变质形成的微粒矿物组合,个别样品见辉石周围发育石榴石冠状体,形成‘红眼圈’结构;利用稀土元素温度计确定二辉麻粒岩的峰期达到了~1000℃的超高温条件,麻粒岩中的锆石仅记录新太古代末期变质年龄(~2.50Ga),与周围TTG质岩石的结晶时间近于相同。洒河桥线性带中的基性麻粒岩以细粒高压麻粒岩组合为主,偶见中粒二辉麻粒岩残留,其峰期P-T条件分别为800~860℃/1.0~1.2GPa和950~1070℃/1.0GPa;麻粒岩中锆石主体记录新太古代末期变质年龄,但出现少量古元古代变质锆石(1.97~1.83Ga),石榴石-全岩Lu-Hf等时线年龄为1.77~1.78Ga。由此推测太平寨和洒河桥地区都经历了新太古代末期超高温麻粒岩相变质作用,又在古元古代晚期遭受了高压麻粒岩相差异性叠加,太平寨地区受叠加较弱,仍然保留太古宙的卵形构造,而洒河桥一带受叠加较强,形成了线性变形带。太平寨卵形域的泥砂质麻粒岩可识别出4阶段的变质矿物组合:包括包体组合、峰期组合、固相线(或最后)组合以及叠加组合。相平衡模拟表明固相线组合的P-T条件为870~890℃/~0.7GPa,峰期组合可达到1000℃/1.1GPa,石榴石中富钙斜长石包体指示麻粒岩早期经历了低压高温变质阶段。由此构建麻粒岩P-T轨迹为逆时针型,包括3个阶段:低压加热至超高温(AG-I),近等温升压至压力峰期(~1.1GPa)(AG-II),和峰后降压降温至固相线(AG-IIIa)以及在亚固相线下的降温降压过程(AG-IIIb)。锆石定年表明泥砂质麻粒岩原岩沉积年龄稍早于2.50Ga,变质年龄为2.48~2.50Ga。泥砂质麻粒岩的峰期变质条件和时代均与二辉麻粒岩一致,叠加组合的P-T条件与高压麻粒岩相似,反映泥砂质麻粒岩也受到了古元古代晚期变质作用影响。依据太平寨麻粒岩的逆时针型P-T轨迹,推测麻粒岩相变质作用包括如下构造过程:(i)AG-I指示表壳岩层受到后续地幔极高温岩浆喷发被埋深加热,或者受到下部TTG质岩浆海的加热过程;(ii)AG-II指示被加热的岩石(总伴有BIF铁矿层)被破碎并在在密度驱动下沉入岩浆海深部,达到下地壳深度;(iii)AG-IIIa/b对应沉入岩浆海深部的岩石伴随穹窿上升发生减压冷却的过程。很多地质观测和数值模拟研究表明太古宙克拉通的形成受太古宙特有的垂直构造体制控制,与太古代之后线性造山带的构造体制完全不同。  相似文献   
172.
The previous studies revealed the I-type Ladakh magmatism in the Andean-type southern margin of the Ladakh batholith (LB) was related to the subduction of the Neotethyan Ocean and India-Eurasia collision. However, LB's S-type granitic magmatism and associated mafic microgranular enclaves (MMEs) are poorly constrained. Here, we present the new data for S-type Ladakh granite (LG) and associated monzodiorite MMEs in the Andean-type orogeny in the southern margin of the Eurasian plate. The low SiO2 (47.4–53.9 wt%), high K2O (1.56–3.21 wt%), Mg# (52–65), continental-arc tracer patterns, and slightly depleted to evolved Sr-Nd isotopic composition ((87Sr/86Sr)i = 0.7047–0.7166; ℇNd (t = 50 Ma) = (+1.40 to −8.92)) for MME suggest that they were derived from the phlogopite-bearing deep lithospheric mantle-source at a depth of 5.4–10.5 km depth with 810–870°C, 1.4–2.8 kbar, and enriched by sediment-melts addition into the mantle-wedge from subducting Neotethyan Oceanic slab. The mantle-derived ascending hot mafic magma mixing with felsic magma of the ancient northern Indian margin-derived, generates monzodiorite MME by assimilation and magma mixing processes. Plagioclase, amphibole, and biotite chemistry support the magma mixing processes. LG are characterized by high SiO2 (63.4–75.0 wt%), K2O (3.93–5.67 wt%), CaO/Na2O ratio of >0.3, differentiation index (90.27–97.46), normative corundum (1.0–2.8), A/CNK values (1.00–1.18), hypersthene (0.7–5.7), and low Al2O3, MgO, TiO2, Fe2O3. They also exhibit peraluminous, variable tracer elemental abundances, variable (87Sr/86Sr)i ratios (0.6967–0.7191), and high whole rock ℇNd (t = 50 Ma) values of −4.15 to −11.92) and ancient two-stage Nd model age of 1160 and 1858 Ma. These features suggest that S-type Ladakh granites were derived from the melting of ancient metagreywacke-dominated metasedimentary rocks of the northern Indian margin by a large amount of mafic magma underplating after subducted Neotethyan slab-rollback. The formation of LG and MMEs related to the Andean-type orogeny in the southern margin of the Eurasian plate.  相似文献   
173.
南盘江盆地油气成藏过程及天然气勘探前景分析   总被引:1,自引:0,他引:1  
本文采用多种研究手段探讨了南盘江盆地的多期成藏、破坏过程。根据有机质成油、成气和油成气的化学动力学模型,计算了南盘江盆地主要烃源岩的油气演化过程;并通过对沥青充填期次、包裹体研究和胶结物期次与沥青的关系,研究了古油藏经历的多期次充注、破坏过程,据此初步建立了南盘江盆地古油藏演化模式。从南盘江盆地古油藏演化过程来看,南盘江盆地油气勘探应以原油裂解的天然气为主,但是由于该地区具有聚气早、破坏时间长的特征,尤其是三叠系沉积之后的巨厚剥蚀使原油裂解气保存的可能性变小,因此在该地区形成大中型天然气藏的难度很大,天然气勘探前景需要进一步研究。  相似文献   
174.
铜陵凤凰山岩体侵位构造变形特征   总被引:13,自引:0,他引:13  
张达  李东旭 《地球学报》1999,20(3):239-245
通过对凤凰山岩体的野外研究,显微构造,包体测量及磁组构分析,详尽解析凤凰山岩体的侵位构造变形特征,并厘定了岩体变形过程中的应变状。结果表明表明凤凰山岩体NNE向水平左旋剪切应力及重力的联合用用下呈气囊膨胀式同构造侵位的机制。  相似文献   
175.
两广交界地区S型花岗岩中麻粒岩包体的特征和成因   总被引:15,自引:3,他引:12  
杜杨松 Coll.  KD 《岩石学报》1999,15(2):309-314
粤西南和桂东南地区S型花岗岩中的麻粒岩包体属于同源包体。麻粒岩具有斜长石+石英+黑云母+紫苏辉石±石榴石±钾长石的矿物组合,其稀土总量(135.95~268.83μg/g)和轻重稀土比值(1.85~5.70)变化不大,稀土配分模式一致,且与下地壳相似。同时,它们的铷锶等时线年龄为638~813Ma,锶同位素初始比值为0.7151~0.7152。岩石变质峰期的温度和压力经估算为781~883℃和0.527~0.709GPa,与中下地壳的温压对应。上述资料表明本区的麻粒岩是形成于晚元古代前后的中下地壳产物。此外,岩相学、矿物学和地球化学方面的证据还表明,粤西南地区的麻粒岩是由热穹隆影响下的区域变质作用形成的,而桂东南地区的麻粒岩是由动热区域变质作用形成的  相似文献   
176.
本文报道了华北克拉通西部武川西乌兰不浪地区太古宙变质基底的锆石SHRIMP年龄和Hf同位素组成。一个片麻状奥长花岗岩样品的锆石具核边结构,核部岩浆锆石和边部变质锆石的207Pb/206Pb加权平均年龄分别为2692±17Ma和2528±16Ma。对9个样品进行了锆石Hf同位素分析。新太古代早期(2692~2697Ma)片麻状奥长花岗岩(2个样品)的岩浆锆石的εHf(t)、tDM1(Hf)和tDM2(Hf)分别为4.78~8.83、2646~2780Ma和2632~2845Ma;新太古代二辉麻粒岩(2个样品)中的捕获锆石的εHf(t)、tDM1(Hf)和tDM2(Hf)分别为-2.30~8.62、2543~2954Ma和2529~3189Ma;新太古代变质深成岩(4个样品)的岩浆锆石的εHf(t)、tDM1(Hf)和tDM2(Hf)分别为-2.60~8.09、2529~2880Ma和2538~3089Ma;古元古代蓝晶石榴长英质片麻岩(1个样品)的碎屑锆石的εHf(t)、tDM1(Hf)和tDM2(Hf)分别为1.52~6.59、2432~2774Ma和2498~2925Ma。结合前人研究结果,可得出如下结论和认识:1)该区存在新太古代早期片麻状奥长花岗岩,太古宙岩石在新太古代晚期普遍遭受高级变质作用影响;2)新太古代早期为该区地壳形成主要时期,新太古代晚期则主要表现为陆壳物质再循环;3)作为阴山地块的典型代表,固阳-武川地区与华北克拉通东部太古宙基底十分类似,可能表明华北克拉通在新太古代晚期已成为统一的整体。  相似文献   
177.
西秦岭造山带北缘的天水李子园地区发现一套高压石榴石单辉麻粒岩,在变质的早古生代岛弧火山-沉积岩系中呈透镜状岩块产出。其峰期矿物组合为石榴石+单斜辉石+角闪石+斜长石+钛铁矿/榍石。利用地质温压计得到的温压条件为T=757~792℃、P=1.3~1.5GPa,达到中压相系的高压麻粒岩相变质条件。LA-ICPMS锆石U-Pb定年显示,锆石变质增生边的谐和年龄为384±1.6Ma,表明高压麻粒岩相变质作用的时代为中-晚泥盆世。结合区域地质资料,这一期变质作用要晚于北秦岭造山带中普遍记录的中低压麻粒岩-角闪岩相变质作用,可能与商丹洋闭合之后碰撞造山阶段的地壳加厚过程有关。岩浆锆石核部的谐和年龄为796±2.2Ma,代表石榴石单辉麻粒岩的原岩形成年代。其锆石核部的Hf同位素组成变化较大,对应的εHf(t)值为-7.3~+13.2,显示出不同源区岩浆混合的特征或者陆壳混染。高压麻粒岩全岩地球化学特征同样显示其经历壳幔岩浆混合作用。结合原岩的形成时代、区域上与裂解相关的岩浆作用和构造背景,我们认为原岩可能是造山带垮塌伸展阶段的壳-幔岩浆混合作用的产物,可能与新元古代Rodinia超大陆裂解事件有关。  相似文献   
178.
刘福来  沈其韩 《岩石学报》1999,15(4):505-517
冀西北麻粒岩相带中的富铝片麻岩(夹层), 主要由石榴(紫苏) 黑云斜长片麻岩和夕线石榴黑云二长(钾长) 片麻岩组成。根据矿物相转变结构及其演化的详细研究, 确定富铝片麻岩存在石榴石与石英、钾长石、夕线石反应生成斜方辉石、堇青石、铝直闪石和黑云母等一系列复杂的变质反应。根据拓扑学、热力学及温压条件的研究结果, 并结合前人的实验资料, 确定富铝片麻岩所发生的这些反应均为特征的以减压为主的反应, 且发生于变质作用近等温减压阶段(M3), 相应的变质温压条件: T= 740℃~820℃, P= 0.41~0.68GPa, 减压幅度达0.40~0.50GPa。研究表明该类反应及相应的矿物相转变不仅受控于温压条件,而且与体系局部水流体介入及其不均一性存在密切的成因关系。这一研究成果对于重新认识冀西北麻粒岩相带富铝片麻岩的成因机制及其变质动力学过程有着重要的科学意义  相似文献   
179.
In situ radioelemental (K, U and Th) analysis and heat production estimates have been made at 59 sites in the Kerala Khondalite Block (KKB) of the Southern Granulite Province (SGP) of India. Together with the in situ analyses on granulites and gneisses previously reported from 28 sites, and heat production estimated from the published geochemical analyses on granites and syenites of the KKB, the new data set allows good characterization of heat production for the major granulite facies rocks and granitoids of the KKB. Garnet biotite gneisses are characterized by high levels of Th and U, with mean values of 60 and 3 ppm, respectively. Khondalites, leptynites and charnockites have slightly lower levels of Th (23, 20 and 22 ppm, respectively) and U (2.9, 2.4 and 0.9 ppm, respectively). The mean K, U, Th abundances for the granites, leucogranites and granitic gneisses ranges from 3.9 to 4.3%, 2.6 to 4.3 ppm, 22 to 50 ppm respectively, and for the syenites 4.8%, 2 ppm and 5.7 ppm. Mean radiogenic heat production values for garnet–biotite gneiss, khondalite, leptynite and charnockite are 5.5, 2.7, 2.4 and 2.2 μW m−3, respectively. For the granites, leucogranites, granitic gneisses and syenites it is 2.6, 3.4, 4.6 and 1.4 μW m−3, respectively. Heat production of granulite facies rocks, which are the most abundant rocks in KKB, correlate well with Th, but less with U, suggesting that variation is caused by Th and U bearing accessory minerals such as monazite and zircon. The high heat production of the KKB granulites are in contrast to the low heat production of the Late Archaean granulites of the Northern Block (NB) of the SGP which are highly depleted in radioelements and also the granulites of Madurai Block (MB) that have higher radioelemental abundances than in the granulites of the NB. The high heat production of the KKB granulites could be due to the nature of protoliths and/or metasomatism associated with Neoproteroic- to- Pan African alkaline magmatic activity represented by alkali granite and syenite–carbonatite emplacements and emplacement of pegmatites.  相似文献   
180.
The Bhandara-Balaghat granulite (BBG) belt occurs as a 190 km long, detached narrow, linear, NE-SW to ENE-WSW trending belt that is in tectonic contact on its northern margin with the Sausar Group of rocks and is bordered by the Sakoli fold belt in the south. The Bhandara part of the BBG belt is quite restricted, comprising a medium to coarse grained two-pyroxene granulite body that is of gabbroic composition and preserves relic igneous fabric. The main part of the belt in Arjuni-Balaghat section includes metasedimentary (quartzite, BIF, Al- and Mg-Al metapelites) and metaigneous (metaultramafic, amphibolite and two-pyroxene granulite) protoliths interbanded with charnockite and charnockitic gneiss. These rocks, occurring as small bands and enclaves within migmatitic and granitic gneisses, show polyphase deformation and metamorphism. Geochemically, basic compositions show tholeiitic trend without Fe-enrichment, non-komatitic nature, continental affinity and show evolved nature. Mineral parageneses and reaction textures in different rock compositions indicate early prograde, dehydration melt forming reactions followed by orthopyroxene stability with or without melt. Coronitic and symplectitic garnets have formed over earlier minerals indicating onset of retrograde IBC path. Evidences for high temperature ductile shearing are preserved at places. Retrogressive hydration events clearly post-date the above paths. The present study has shown that the BBG belt may form a part of the Bastar Craton and does not represent exhumed oceanic crust of the Bundelkhand Craton. It is further shown that rocks of the BBG belt have undergone an earlier high-grade granulite metamorphism at 2672 ± 54 Ma (Sm-Nd age) and a post-peak granulite metamorphism at 1416 ± 59Ma (Sm-Nd age, 1380 ± 28Ma Rb-Sr age). These events were followed by deposition of the Sausar supracrustals and Neoproterozoic Sausar orogeny between 973 ± 63Ma and 800 ± 16Ma (Rb-Sr ages).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号