首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   7篇
  国内免费   87篇
地球物理   4篇
地质学   180篇
综合类   2篇
自然地理   1篇
  2022年   3篇
  2021年   1篇
  2020年   6篇
  2019年   2篇
  2018年   7篇
  2017年   2篇
  2016年   5篇
  2015年   7篇
  2014年   9篇
  2013年   9篇
  2012年   12篇
  2011年   6篇
  2010年   3篇
  2009年   7篇
  2008年   7篇
  2007年   11篇
  2006年   12篇
  2005年   7篇
  2004年   12篇
  2003年   6篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   11篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1984年   1篇
  1983年   2篇
排序方式: 共有187条查询结果,搜索用时 15 毫秒
41.
Three groups of Mesozoic shoshonitic or high-K calc-alkaline intrusive rocks are identified in Dabieshan high-pressure (HP) and ultrahigh-pressure (UHP) metamorphic zone, east-central China and they are related to: (I) slab breakoff; (II) magmatic underplating; and (III) doming. Group-I, the slab breakoff-type, consists of late Triassic (210 Ma) mafic monzodiorites. It has moderate to high Sr, and low Rb and Ba abundances, and moderate light rare earth element (LREE)/heavy rare earth element (HREE) and K/Rb ratios. Group-II, the underplating-type, consists mainly of middle Jurassic–early Cretaceous (160–120 Ma) hornblende quartz monzonitic, biotite monzogranitic, and syenogranitic plutons, characterized by relatively high LREE/HREE and K/Rb ratios, and by a large range in concentration of Sr and Ba, coupled with much smaller range in Rb. Group-III, the doming-type, is represented by Cretaceous (125–95 Ma) granitic stocks and granitic porphyry. Compared with group-II, it has high Rb, Y and HREE abundances, low Sr and Ba abundances and low LREE/HREE and K/Rb ratios. All groups have similar Nd and Sr isotopic compositions. Among the three groups, post-collisional granitoid magmatism (group-II) with ages of 160 to 120 Ma, post-dating the HP and UHP metamorphism at 245 to 220 Ma, is the most abundant in the Dabieshan area. The post-collisional granitoid plutons were initially emplaced at different levels ranging from mid-crust to near-surface. This study shows that the whole-rock chemistry of the granitoids vary systematically with crystallization pressures. For example, K2O, normative Or, Rb and Zr show the strongest increase with decreasing pressure, whereas Ba, Nb, Nd, Yb, MnO, and normative An decrease upward in the Dabie Block. It is suggested that ascent of differentiated, buoyant liquids, combined with fractionation paired with assimilation (AFC), is responsible for the vertical variation. Geological, geochemical and petrological data indicate that group-I could have been generated by partial melting of enriched subcontinental lithosphere mantle due to slab breakoff. Group-II rocks could have been produced mainly from crustal assimilation/melting and fractional crystallization of mantle-derived magmas, whereas group-III magma could have derived from anatexis of the Dabie complex and was highly evolved in a hot doming setting. The late Triassic-early Jurassic slab breakoff may be responsible for the exhumation of UHP rocks through the mantle. The voluminous granitic emplacement together with an episode of rapid denudation suggests that magmatic underplating and inflation could have played a role in the Middle Jurassic–Early Cretaceous rapid exhumation of Dabieshan.  相似文献   
42.
《地学前缘(英文版)》2020,11(5):1711-1725
The tectonic setting of the northern Alxa region during the Late Paleozoic is highly controversial.The key to resolve this controversy is to recognize the Late Paleozoic magmatic processes in the northern Alxa.In this paper,we present new zircon U-Pb ages,Hf-isotopic compositions and whole-rock geochemical data of four granitoids along the Zhusileng-Hangwula Tectonic Belt in the northern Alxa region that could provide critical information about the tectonic evolution of this region.The zircon U-Pb data could be grouped as two phases:Late Devonian granite and diorite(ca.373-360 Ma),and Late Carboniferous granodiorite(ca.318 Ma).The Late Devonian granites and diorites are metaluminous to slightly peraluminous,with A/CNK and A/NK ratios of 0.90-1.11 and0.95-2.19,respectively.The Late Devonian diorites are characterized by high MgO,Cr and Ni contents and MgO#values,together with variable ε_(Hf)(t) values from-1.0 to+1.3 and old T_(DM2) ages varied from 1283 Ma to 1426 Ma,indicating the primary magma was potentially derived from magma mixing of depleted mantle with Mesoproterozoic continental crust.Even though the Late Devonian granites yielded most positive and minor negative e_(Hf)(t) values between-1.1 to+5.7(three grains are negative) with two-stage model ages(T_(DM2)) of 1003-1438 Ma,they display low MgO,Cr and Ni contents and MgO#values,suggesting that they were mainly derived from juvenile crustal materials,mixed with a small amount of ancient crust.The Late Carboniferous granitoids are metaluminous and medium-K calc-alkaline series,with A/CNK and A/NK ratios ranging from 0.88 to 0.95 and1.75 to 1.90,respectively.These rocks were potentially derived from juvenile crustal materials mixed with depleted mantle,as evidenced by their high ε_(Hf)(t) values(+11.6 to+14.1) and young TDM2 ages(427 Ma to 586 Ma),as well as high Mg#values,and MgO,Ni and Cr contents.Our data,along with available sedimentary evidence and previous researches,indicate that the Late Devonian and Late Carboniferous rocks are arc-related granitoids under the subduction setting.The identification of arc-related granitoids in the northern Alxa region not only reveals the Late Paleozoic magmatic process in response to the subduction of Paleo Asian Ocean,but also provide significant constrains to the tectonic evolution of the Central Asian Orogenic Belt.  相似文献   
43.
激光ICP-MS锆石年龄测定结果显示,出露于辽东半岛南部金州地区的太古宙花岗岩形成年龄为2440~2500Ma左右,比辽宁北部—吉林南部大致同时的太古宙花岗岩形成略晚,或基本相当。结合其它地质证据,上述两者在太古宙可能是相互独立的两个块体(分别称辽南地块和辽北—吉南地块),它们在古元古代晚期因造山作用而拼合在一起。古元古代花岗岩形成于两个时期,早期形成的条痕状花岗岩侵位年龄为2160Ma,为辽河群沉积的基底岩石;晚期形成的斑状二长花岗岩和角闪辉石正长岩形成于距今约1850Ma,标志着辽吉古元古代造山作用的结束。据此,可确定辽河群沉积—变质的时限为距今2160~1850Ma,其演化时间不超过300Ma。  相似文献   
44.
The rare earth element patterns of the gneisses of Bastar and Bundelkhand are marked by LREE enrichment and HREE depletion with or without Eu anomaly. The spidergram patterns for the gneisses are characterized by marked enrichment in LILE with negative anomalies for Ba, P and Ti. The geochemical characteristics exhibited by the gneisses are generally interpreted as melts generated by partial melting of a subducting slab. The style of subduction was flat subduction, which was most common in the Archean. The rare earth patterns and the multi-element diagrams with marked enrichment in LILE and negative anomalies for Ba, P and Ti of the granitoids of both the cratons indicate interaction between slab derived melts and the mantle wedge. The subduction angle was high in the Proterozoic. Considering the age of emplacement of the gneisses and granitoids that differs by ∼ 1 Ga, it can be assumed that these are linked to two independent subduction events: one during Archaean (flat subduction) that generated the precursor melts for the gneisses and the other during the Proterozoic (high angle subduction) that produced the melts for the granitoids. The high values of Mg #, Ni, Cr, Sr and low values of SiO2 in the granitoids of Bastar and Bundelkhand cratons compared to the gneisses of both the cratons indicate melt-mantle interaction in the generation of the granitoids. The low values of Mg#, Ni, Cr, Sr and high values of SiO2 in the gneisses in turn overrules such melt-mantle interaction.  相似文献   
45.
The Quanji Massif is located on the north side of the Qaidam Block and is interpreted as an ancient cratonic remnant that was detached from the Tarim Craton. There are regionally exposed granitic gneisses in the basement of the Quanji Massif whose protoliths were granitic intrusive rocks. Previous studies obtained intrusion ages for some of these granitic gneiss protoliths. The intrusion ages span a wide range from ~ 2.2 Ga to ~ 2.47 Ga. This study has determined the U-Pb zircon age of four granitic gneiss samples from the eastern, central and western parts of the Quanji Massif. CL images and trace elements show that the zircons from these four granitic gneisses have typical magmatic origins, and experienced different degrees of Pb loss due to strong metamorphism and deformation. LA-ICPMS zircon dating yields an upper intercept age of 2381 ± 41 (2σ) Ma from monzo-granitic gneiss in the Hudesheng area and 2392 ± 25 (2σ) Ma from granodioritic gneiss in the Mohe area, eastern Quanji Massif, and 2367 ± 12 (2σ) Ma from monzo-granitic gneiss in the Delingha area, central Quanji Massif, and 2372 ± 22 (2σ) Ma from monzo-granitic gneiss in the Quanjishan area, western Quanji Massif. These results reveal that the intrusive age of the protoliths of the widespread granitic gneisses in the Quanji Massif basement was restricted between 2.37 and 2.39 Ga, indicating regional granitic magmatism in the early Paleoproterozoic, perhaps related to the fragmentation stage of the Kenorland supercontinent. Geochemical results from the granodioritic gneiss from the Mohe area indicate that the protolith of this gneiss is characterized by adakitic rocks derived from partial melting of garnet-amphibolite beneath a thickened lower crust in a rifting regime after continent-continent collision and crustal thickening, genetically similar to the TTG gneisses in the North China Craton. This suggests that the Quanji Massif had a tectonic history similar to the Archean Central Orogenic Belt of North China Craton during the early Paleoproterozoic. We tentatively suggest that the Quanji Massif and the parental Tarim Craton and the North China Craton experienced rifting in the early Paleoproterozoic, after amalgamation at the end of the Archean. The Tarim Craton and North China Craton might have had close interaction from the late Neoarchean to the early Paleoproterozoic.  相似文献   
46.
The Yagan area of the southernmost Sino–Mongolian border is characterized by an extensional structure where a large metamorphic core complex (Yagan–Onch Hayrhan) and voluminous granitoids are exposed. New isotopic age data indicate that the granitoids, which were previously regarded as Paleozoic in age, were emplaced in early and late Mesozoic times. The early Mesozoic granitoids have 228±7 Ma U–Pb zircon age, and consist of linear mylonitic quartz monzonites and biotite monzogranites. Their chemical compositions are similar to those of potassic granites and shoshonitic series, and show an intraplate and post-collisional environment in tectonic discrimination diagrams. Their fabrics reveal that they experienced syn-emplacement extensional deformation. All these characteristics suggest that the adjustment, thinning and extensional deformation at middle to lower crustal levels might have occurred in the early Mesozoic. The late Mesozoic granitoids have a U–Pb zircon age of 135±2 Ma, and are made up of large elliptical granitic plutons. They are high-K calc-alkaline, and were forcefully emplaced in the dome extensional setting. Both the early and late Mesozoic granitoids have Nd (t) values of −2.3 to +5, in strong contrast with the negative Nd (t) values (−11) of the Precambrian host rocks. This suggests that juvenile mantle-derived components were involved in the formation of the granitoids. The similar situation is omnipresent in Central Asia. This study demonstrates that tectonic extension, magmatism and crustal growth are closely related, and that post-collisional and intraplate magmatism was probably a significant process for continental growth in the Phanerozoic.  相似文献   
47.
本文报道了冀西北地区麻粒岩相片麻岩中矿物内流体包裹体的特征并讨论了其地质意义。根据包裹体的形态、赋存状态并结合包裹体CO2密度的演化,在麻粒岩相花岗质片麻岩的矿物中可识别出四种类型的流体包裹体:1)一相富CO2包裹体、2)气液两相富CO2包裹体、3)三相含液态CO2包裹体,4)含石盐子晶的多相包裹体。不同类型包裹体的特征和密度等表明,该区花岗质片麻岩经历了三个阶段的变质过程。第一阶段,在麻粒岩相变质作用峰期之后捕获了高密度的富CO2包裹体。在第二阶段形成了两相富CO2包裹体。第三阶段捕获了低密度的三相含液态CO2包裹体。这种很低密度的流体包裹体反映了晚期变形和退变质期间的温压条件  相似文献   
48.
《China Geology》2018,1(1):84-108
There are large volumes of the Phanerozoic granitoid rocks in China and neighboring areas. In recent years, numerous new and precise U-Pb zircon ages have been published for these granitoids, and define many important magmatic events, such as ca. 500 Ma granitoid events in the West Junggar, Altai orogens in the NW China, and Qinling orogen in the central China. These ages accurately constrain the time of important Early Paleozoic, Late Paleozoic, Early Mesozoic and Late Mesozoic magmatic events of the northern, central, western, southern and eastern orogenic Mountains in China. There occur various types of granitoids in China, such as calc-alkaline granite, alkali granite, highly-fractionated granite, leucogranite, adakite, and rapakivi granite. Rapakivi granites are not only typical Proterozoic as in the North China Craton, but were also emplaced during Paleozoic and Mesozoic in the Kunlun-Qinling orogen, a part of the China Central Orogenic Belt (CCOB). Nd-Hf isotopic tracing and mapping show that granitoids in the southern Central Asian Orogenic Belt (CAOB) in China (or the Northern China Orogenic Belt) are characterized predominantly by juvenile sources. The juvenile crust in this orogenic domain accounts for over 50% by area, distinguishing it from other orogenic belts in the world, and those in central (e.g., Qinling), southwestern and eastern China. Based on a large amount of new age data, a preliminary granitoid and granitoid-tectonic maps of China have been preliminarily compiled, and an evolutionary framework of Phanerozoic granitoids in China and neighboring areas has been established from the view of assembly and breakup of continental blocks. Research ideas on granitoid tectonics has also been proposed and discussed.  相似文献   
49.
The Shah Soltan Ali area (SSA) is located in the eastern part of the Lut Block metallogenic province. In this area different types of sub-volcanic intrusions including diorite porphyry, monzonite porphyry and monzodiorite porphyry have intruded into basaltic and andesitic rocks. Zircon U–Pb dating and field observations indicate that intermediate to mafic volcanic rocks (38.9 Ma) are older than subvolcanic units (38.3 Ma). The subvolcanic intrusions show high-K calc-alkaline to shoshonitic affinity and are metaluminous. Based on mineralogy, high values of magnetic susceptibility [(634 to 3208) × 10?5 SI], and low initial 87Sr/86Sr ratios, they are classified as belonging to the magnetite-series of oxidant I-type granitoids and are characterized by an enrichment in LREEs relative to HREEs, with negative Nb, Ti, Zr and Eu anomalies. These granitoids are related to volcanic arc (VAG) and were generated in an active continental margin. Low initial 87Sr/86Sr ratios (0.7043 to 0.7052) and positive εNd values (+1.48 to +3.82) indicate that the parental magma was derived from mantle wedge. Parental magma was probably formed by low degree of partial melting and metasomatized by slab derived fluids. Then assimilation and fractional crystallization processes (AFC) produced the SSA rocks. This magma during the ascent was contaminated with the crustal material.All data suggest that Middle-Late Eocene epoch magmatism in the SSA area, occurred during subduction of Neo-Tethys Ocean in east of Iran (between Afghan and Lut Blocks).  相似文献   
50.
野马泉大型铁多金属矿床位于东昆仑造山带祁漫塔格地区,矿区发育大量与铁多金属成矿关系密切的花岗质岩体。LA-ICP-MS锆石U-Pb定年表明北矿带隐伏二长花岗岩、花岗闪长岩年龄分别为393±2Ma、386±1Ma;南矿带斑状石英二长闪长岩、正长花岗岩年龄为219±1Ma、213±1Ma,分别为早-中泥盆世和晚三叠世岩浆活动的产物。早-中泥盆世花岗闪长岩与二长花岗岩均为高钾钙碱性,A/CNK值(0.92~1.01)<1.1,具中等强度的负Eu异常(δEu为0.60~0.81),明显亏损P、Nb、Ta、Ti、Sr、Ba等,富集LREE、Rb、Th、U、K等,显示了I型花岗岩的特征。晚三叠世斑状石英二长闪长岩含有少量角闪石,A/CNK值(0.88~0.95)<1,轻稀土富集,具中等负Eu异常(δEu为0.49~0.67),富集Rb、U、Th、K等大离子亲石元素,亏损P、Nb、Ta、Ti、Sr、Ba等,具有I型花岗岩的特征;正长花岗岩高硅(SiO2=77.20%~78.13%)、富碱(K2O+Na2O=7.91%~8.27%)、贫铝(Al2O3=11.71%~12.18%)、贫钙(CaO=0.90%~1.01%),富集LREE、Y、Zr、Hf、Th、U、Ga等,强烈亏损Ba、Sr、P、Ti、Eu,具强烈的负Eu异常(δEu为0.08~0.13),显示弱过铝质A型花岗岩的特征。锆石Hf同位素组成表明,早-中二叠世岩体的εHft)为-3.3~6.2,晚三叠世岩体的εHft)为-6.3~5.5,显示在成岩过程中有地幔组分的参与。综合研究认为,野马泉矿区早-中泥盆世、晚三叠世岩体分别形成于早古生代构造-岩浆旋回的碰撞-后碰撞阶段和晚古生代-早中生代构造-岩浆旋回的碰撞-后碰撞阶段,可能是由地幔底侵古老陆壳,幔源基性岩浆与壳源花岗质岩浆发生不同程度混合作用而生成,壳幔物质交换为区内大规模铁铜铅锌多金属矿化提供大量成矿物质。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号