首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   11篇
  国内免费   76篇
地球物理   23篇
地质学   345篇
海洋学   4篇
综合类   1篇
自然地理   20篇
  2024年   1篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   16篇
  2019年   14篇
  2018年   11篇
  2017年   16篇
  2016年   12篇
  2015年   14篇
  2014年   12篇
  2013年   18篇
  2012年   18篇
  2011年   8篇
  2010年   4篇
  2009年   22篇
  2008年   24篇
  2007年   20篇
  2006年   21篇
  2005年   19篇
  2004年   32篇
  2003年   15篇
  2002年   14篇
  2001年   11篇
  2000年   10篇
  1999年   12篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   6篇
  1994年   10篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1988年   2篇
  1987年   1篇
  1980年   1篇
排序方式: 共有393条查询结果,搜索用时 15 毫秒
391.
A thick Upper Ordovician shelf sequence was developed in the northern Gondwana margin (southernmost exposures of the Central Iberian Zone). Integrated sedimentologic and stratigraphic studies allow distinction between pedogenetic processes (Facies association C), shoreline deposits (Facies association S), proximal to distal shelf (Facies association L, H1, H2, H3) and outer shelf zone or open marine environments (Facies association M, Mo). The vertical distribution of facies is characterized by the presence of regressive high frequency sequences (partial shelf progradational sequences), affected by the presence of catastrophic phenomena (storms). These sequences, in turn, can be classified into higher‐order transgressive (T)–regressive (R) cycles. Two second‐order T‐R megacycles (MC. Ord‐2 and MC. Sil‐1) limited by a major sequence boundary are identified. Traces of emersion (palaeokarsts and palaeosols) are detected along the sequence boundary, and these are related to the eustatic sea‐level fall that occurred during the Ashgillian. The MC. Ord‐2 and MC. Sil‐1 megacycles extend respectively from the Middle Arenig to the Ashgillian and from Late Ashgillian to the Late Llandovery. Major transgressive peaks occurred at the Llanvirn and at the Middle Llandovery (Aeronian). The vertical distribution of the facies delineates successive genetically related units in relation to relative sea‐level changes. Within the upper part of the first megacycle (MC. Ord‐2) six third‐order cycles are proposed (Lla‐1, Car‐1, Car‐2, Car‐3, Car‐4, Ash‐1), in which a transgressive and a regressive interval can be distinguished. Within the lower part of the second megacycle (MC. Sil‐1) two transgressive–regressive third‐order cycles are proposed (Lly‐1, Lly‐2). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
392.
The Taurides, the southernmost of the three major tectonic domains that constitute present‐day Turkey, were emplaced following consumption of the Tethyan Ocean in Late Mesozoic to mid‐Tertiary times. They are generally assigned an origin at the northern perimeter of Gondwana. To refine palaeogeographic control we have investigated the palaeomagnetism of a range of Jurassic rocks. Forty‐nine samples of Upper Jurassic limestones preserve a dual polarity remanence (D/I=303/−9°, α95=6°) interpreted as a primary magnetization acquired close to the equator and rotated during emplacement of the Taurides. Result from mid‐Jurassic dolerites confirm a low palaeolatitude for the Tauride Platform during Jurassic times at the Afro–Arabian sector of Gondwana. Approximately 4000 km of Tethyan closure subsequently occurred between Late Jurassic and Eocene times. Although related Upper Jurassic limestones and Liassic redbeds preserve a sporadic record of similar remanence, the dominant signature in these latter rocks is an overprint of probable mid‐Miocene age, probably acquired during a single polarity chron and imparted by migration of a fluid front during nappe loading. This is now rotated consistently anticlockwise by c. 30° and conforms to results of previous studies recording bulk Neogene rotation of the Isparta region following Lycian nappe emplacement. The regional distribution of this overprint implies that the Isparta Angle (IA) has been subject to only small additional closure (<10°) since Late Miocene time. A smaller amount (c. 6°) of clockwise rotation within the IA since Early Pliocene times is associated with an ongoing extensional regime and reflects an expanding curvature of the Tauride arc produced by southwestward extrusion of the Anatolian collage as a result of continuing northward motion of Afro–Arabia. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
393.
The Dom Feliciano Belt evolution is reviewed based on cross-sections, space–time diagrams, P-T paths, and Sr–Nd isotopic data of pre-collisional metaigneous rocks. The belt is divided into northern, central and southern sectors, subdivided into tectonic domains, developed at Neoproterozoic pre-, syn- and post-collisional stages. The northern sector foreland pre-collisional setting represents a rift, with tholeiitic (meta)volcanic rocks (∼800 Ma) chronocorrelated to hinterland intermediate and acidic orthogneisses of high-K calc-alkaline arc signature. In contrast, the central sector records a complete section from the forearc towards the back-arc region during pre-collisional times. In the western domain, ophiolites (∼920 Ma) are associated with arc-related orthogneisses and metavolcanic rocks (880–830 Ma; 760–730 Ma). At back-arc position, continental arc-related magmatism (800–780 Ma) is registered by hinterland orthogneisses and central foreland metavolcanic rocks. Ophiolites on the hinterland opposite side comprise two compositional groups, with N-MORB and supra subduction signature, interpreted as a back-arc basin record (∼750 Ma). The pre-Neoproterozoic basement of the whole belt is correlated with the Nico Perez Terrane and Luis Alves Block (Archean to Mesoproterozoic, with Congo Craton affinity). This contrasts with the Piedra Alta Terrane (Rio de La Plata Craton, only Paleoproterozoic), westernmost Uruguay. The suture between the Piedra Alta and Nico Perez terranes is correlated with the suture zone in the westernmost central sector. Transpression affected both foreland and hinterland during collision (660–640 Ma), with high-T/low-P hinterland progressive exhumation, whilst foreland low- to medium-grade correlated sequences record underthrusting. Post-collisional processes included magmatism throughout the belt (640–580 Ma), strain partitioning along strike-slip shear zones, and foreland basin fill. Late tectono-metamorphic and magmatic processes (560–540 Ma) were attributed to the Kalahari Craton collision. Arc magmatism migration due to subduction angle variations suggests modern-style plate tectonics during Gondwana amalgamation. Diachronism and kinematic inversion are characteristic of an oblique convergent multi-plate orogenic system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号