首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   11篇
  国内免费   76篇
地球物理   23篇
地质学   345篇
海洋学   4篇
综合类   1篇
自然地理   20篇
  2024年   1篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   16篇
  2019年   14篇
  2018年   11篇
  2017年   16篇
  2016年   12篇
  2015年   14篇
  2014年   12篇
  2013年   18篇
  2012年   18篇
  2011年   8篇
  2010年   4篇
  2009年   22篇
  2008年   24篇
  2007年   20篇
  2006年   21篇
  2005年   19篇
  2004年   32篇
  2003年   15篇
  2002年   14篇
  2001年   11篇
  2000年   10篇
  1999年   12篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   6篇
  1994年   10篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1988年   2篇
  1987年   1篇
  1980年   1篇
排序方式: 共有393条查询结果,搜索用时 46 毫秒
311.
西藏冈底斯B型山链南缘松多群的构成及其变质变形特征   总被引:2,自引:0,他引:2  
松多群是冈底斯B型山链变质基底的组成部分之一 ,并于晚三叠世—晚第三纪雅江缝合带俯冲超碰撞阶段演化为该B型山链活化根带逆冲推覆超岩片 ,系冈瓦纳大陆北缘于震旦—寒武纪小洋盆及陆缘火山沉积的产物。松多群岔萨岗组、马布库组、雷龙库组及罗马岭超镁铁质岩带 ,彼此间均为构造接触 ,实为一套构造岩石组合体 ,由时代相近而来源、性质不同的地质体构成 ,并经历了低绿片岩相—低角闪岩相变质作用和 4期主要构造变形。岔萨岗组主体为变质基性火山岩 ,化学成分相当TMORB ;马布库组、雷龙库组片岩、石英岩相当于被动陆缘泥砂质复理石建造及石英质复理石建造。罗马岭超镁铁质岩经综合分析判别则形成于伸展裂陷小洋盆构造环境。因而得出松多群为一较完整有限小洋盆火山沉积产物的结论。  相似文献   
312.
The South American sauropod dinosaurs fossil record is one of the world's most relevant for their abundance (51 taxa) and biogeographical implications. Their historical biogeography was influenced by the continental fragmentation of Gondwana. The scenery of biogeographic and stratigraphic distributions can provide new insight into the causes of the evolution of the sauropods in South America. One of the most important events of the sauropods evolution is the progressive replacement of Diplodocimorpha by the Titanosauriformes during the early Late Cretaceous. The fluctuation of the sea levels is frequently related to the diversity of sauropods, but it is necessary to take into account the geological context in each continent. During the Maastrichthian, a global sea level drop has been described; in contrast, in South America there was a significant rise in sea level (named ‘Atlantic transgression’) which is confirmed by sedimentary sequences and the fossil record of marine vertebrates. This process occurred during the Maastrichtian, when the hadrosaurs arrived from North America. The titanosaurs were amazingly diverse during the Late Cretaceous, both in size and morphology, but they declined prior to their final extinction in the Cretaceous/Paleocene boundary (65.5Yrs).  相似文献   
313.
Understanding the evolution of the northern Paraguay Belt, Brazil, is critical in two current controversies: (i) the number, timing and significance of Ediacaran glaciations; and (ii) the timing of amalgamation of South American Gondwana. The Neoproterozoic Alto Paraguay Group forms much of the northern Paraguay Belt. The Serra Azul Formation, within this Group, contains unequivocal evidence for a glacial influence on sedimentation, including multi‐directional striations on sandstone clasts and striated, polished and bullet‐shaped mudstone clasts. However, the age of the Serra Azul Formation is not well‐constrained. The northern Paraguay Belt also formed after the traditionally accepted time for amalgamation of South American Gondwana. If the orogen represents closure of an ocean, then this traditional view is incorrect. A significant number of single grain 40Ar/39Ar detrital muscovite cooling ages (ca 120) from the Alto Paraguay Group are presented. The three youngest grains from the Serra Azul Formation yield a weighted mean age of 640 ± 15 Myr, providing a robust maximum depositional age for this formation. This age, when considered with other data, suggests that the Serra Azul Formation developed in a mid‐Ediacaran glaciation consistent with that expressed in the Gaskiers Formation of Newfoundland, Canada. Cryogenian 40Ar/39Ar detrital muscovite ages from the Alto Paraguay Group are hard to reconcile with the known geology of Amazonia and are interpreted as being sourced from the evolving orogen to the east – from an arc terrane, possibly the Goiás–Paranapanema Massif. Detrital muscovites in the upper part of the Alto Paraguay Group are as young as 544 ± 7 Myr, consistent with mounting evidence that indicates a Cambrian age for orogenesis within the Paraguay Belt during the final amalgamation of Gondwana. This article suggests that the data best support a model where ocean closure in the region continued until Ediacaran/Cambrian times, with final ocean closure represented by orogenesis in the Paraguay–Araguaia orogen.  相似文献   
314.
In the 80's, Leonardi treated the presence of a vertebrate ichnological locality from the Barremian Corda Formation, Parnaíba Basin, on the left bank of the Tocantins river, near of the São Domingos town, Itaguatins, State of Tocantins, Brazil. Originally, the record was composed of at least seven in situ trackways, accounting for fifty six tracks. Since 2011, the Hydroelectric Power Plant do Estreito has begun to work, causing the development of a water reservoir 160 km upstream to the ichnological site, causing periodic and highly energetic floods over the footprints-bearing level and altering it. The imprints are poorly to moderate preserved, but it is possible to distinguish the general morphology and the spatial arrangement of the footprints. The specimens are represented by pes imprints, mostly circular to subcircular, with no digital and claw impressions. No distinguishable manus imprints are present. The trackways are relative narrow with respect to the size of the tracks, so they are considered into the Parabrontopodus-like category. The São Domingos tracks have been originally assigned to iguanodontid dinosaurs, and posteriorly related to a sauropodian origin. This idea is herein accepted, particularly to a basal sauropod, basal macronarians, or diplodocoids. Up to date, the tracks from the São Domingos locality are the only vertebrate fossil record from the Corda Formation, meaning an important contribution to the Cretaceous ichnofauna from South America.  相似文献   
315.
The Galilee study area, northern Israel, is at present an uplifted, steep continental margin that formed mainly during the Jurassic and has a large positive isostatic anomaly. Since the Jurassic, it was modified by several tectonomagmatic events, which this study attempts to define and classify by updating, reprocessing and reinterpreting gravity, aeromagnetic and geological data. The prominent Rehovot-Carmel N–S positive reduced-to-pole (RTP) magnetic anomaly caused by the Gevim Volcanics, as well as the coexisting Helez-Gaash high Bouguer gravity and the Pleshet low Bouguer gravity, represent the deep (>5 km) Permo-Triassic dominant horst and graben structure of Israel. The Jonah Ridge and Beirut high SW–NE RTP magnetic anomalies in the Levant basin delineate the Levant continental edge that is marked by a deeply buried horst covered by a Late Cretaceous volcanic complex. The Asher and Devora Jurassic volcanics appear to be responcible for the Atlit and Galilee negative magnetic anomalies and for significant negative gravity anomalies which became clear after removing gravity effect of the upper (post-Turonian) light density sediments from the observed gravity. The volcanics extend along a SW–NE belt parallel to the strike of the Moho. It is suggested here that the Carmel-Gilboa fault propagated during the Late Cretaceous from the Levant basin across the Galilee area southeastward to form the Azraq-Sirhan graben in Jordan. As such, it forms a right-step, en echelon, dextral strike-slip fault with associated tectonic basins of various shapes. During the Oligocene and before formation of the Dead Sea transform (DST), the reactivation of the Azraq-Sirhan graben was accompanied by tectonic driven rift propagation in the opposite direction, from Azraq-Sirhan to northwest. It dispersed into many faults and terminated ∼10 km west of the present DST. During the Miocene it propagated in the same direction and includes internal volcanic activity. The numerous Miocene-Pliocene volcanic centers on the margins of the DST indicate that the preferred pathway for magmas at that time was not within the deep basins of the DST.  相似文献   
316.
Aeromagnetic surveys help reveal the geometry of Precambrian terranes through extending the mapping of structures and lithologies from well-exposed areas into areas of younger cover. Continent-wide aeromagnetic compilations therefore help extend geological mapping beyond the scale of a single country and, in turn, help link regional geology with processes of global tectonics. In Africa, India and related smaller fragments of Gondwana, the margins of Precambrian crustal blocks that have escaped (or successfully resisted) fracture or extension in Phanerozoic time can often be identified from their aeromagnetic expression. We differentiate between these rigid pieces of Precambrian crust and the intervening lithosphere that has been subjected to deformation (usually a combination of extension and strike-slip) in one or more of three rifting episodes affecting Africa during the Phanerozoic: Karoo, Early Cretaceous and (post-) Miocene. Modest relative movements between adjacent fragments in the African mosaic, commensurate with the observed rifting and transcurrent faulting, lead to small adjustments in the position of sub-Saharan Africa with respect to North Africa and Arabia. The tight reassembly of Precambrian sub-Saharan Africa with Madagascar, India, Sri Lanka and Antarctica (see animation in http://kartoweb.itc.nl/gondwana) can then be extended north between NW India and Somalia once the Early Cretaceous movements in North Africa have been undone. The Seychelles and smaller continental fragments that stayed with India may be accommodated north of Madagascar. The reassembly includes an attempt to undo strike-slip on the Southern Trans-Africa Shear System. This cryptic tectonic transcontinental corridor, which first formed as a Pan-African shear belt 700–500 Ma, also displays demonstrable dextral and sinistral movement between 300 and 200 Ma, not only evident in the alignment of the unsuccessful Karoo rifts now mapped from Tanzania to Namibia but also having an effect on many of the eventually successful rifts between Africa-Arabia and East Gondwana. We postulate its continuation into the Tethys Ocean as a major transform or megashear, allowing minor independence of movements between West Gondwana (partnered across the Tethys Ocean with Europe) and East Gondwana (partnered with Asia), Europe and Asia being independent before the 250 Ma consolidation of the Urals suture. The relative importance of primary driving forces, such as subduction ‘pull’, and ‘jostling’ forces experienced between adjacent rigid fragments could be related to plate size, the larger plates being relatively closely-coupled to the convecting mantle in the global scheme while the smaller ones may experience a preponderance of ‘jostling’ forces from their rigid neighbours.  相似文献   
317.
为什么要提出西藏东南部早白垩世措美大火成岩省   总被引:13,自引:3,他引:10  
朱弟成  夏瑛  裘碧波  王青  赵志丹 《岩石学报》2013,29(11):3659-3670
近年在西藏东南部特提斯喜马拉雅带东段大规模白垩纪火成岩受到了很多学者的关注。这里的火成岩岩石类型包括玄武岩、镁铁质岩墙/岩床、辉长岩侵入体以及少量层状超镁铁质岩和酸性火山岩。锆石U-Pb定年结果指示现今覆盖面积约50000km2的岩浆活动发生在130~136Ma(峰期约132Ma)之间。镁铁质岩显示OIB型(高Ti)、N-MORB型(低Ti)和过渡型(介于二者之间)三种地球化学类型,其中未受地壳混染的镁铁质岩的Sr-Nd同位素和锆石Hf同位素成分类似于Kerguelen地幔柱产物。在扣除堆晶橄榄石之后,通过橄榄石-熔体平衡计算,苦橄玢岩母岩浆的MgO含量约20%,对应的地幔潜温1560℃。西藏东南部白垩纪火成岩浆活动这种覆盖范围大、持续时间短和地幔潜温高等特征,非常类似于世界上其它地幔柱成因的大火成岩省或热点,因而将其描述和命名为措美(Comei)大火成岩省是合理的。年代学、地球化学和古地理重建资料显示藏南措美大火成岩省和南西澳大利亚同期的Bunbury玄武岩可能代表了同一个大火成岩省(即Comei-Bunbury大火成岩省)。Comei-Bunbury大火成岩省很可能记录了Kerguelen地幔柱在132Ma左右的早期岩浆作用,拉开了大印度从澳大利亚分离出来的序幕,影响了同期Weissert大洋缺氧事件的形成。  相似文献   
318.
Australites in an excellent state of preservation are common (up to 1 specimen per 300 m2) in lag gravels flooring corridors between seif dunes in the Motpena and Myrtle Springs areas of the Lake Torrens plain, South Australia. A study of the Quaternary stratigraphy of the region indicates that late Wisconsinan relict dunes (Lake Torrens Formation) are the most likely source of the australites. Radiocarbon dating indicates that the Lake Torrens Formation was deposited between about 24,000 and 16,000 years B.P. As the excellent preservation of most of the australites indicates that they have undergone negligible transport since their infall, it is concluded that the australites fell into the dune field sometime between about 24,000 and 16,000 years B.P.  相似文献   
319.
Long-term shoreline shifts reflect eustatic changes, tectonic activity, and sediment supply. Available lithostratigraphical data from northern Africa, Arabia, and the Tethys Hymalaya, coupled with facies interpretations, permit us to trace late Silurian–Middle Devonian long-term shoreline shifts across the northern Gondwanan margin and to compare them with constraints on global sea-level changes. Our analysis establishes a regression–transgression cycle. Its coincident global sea-level changes reveal the dominance of the eustatic control. A transgression–regression cycle observed in Arabia is best explained by regional subsidence. Our study highlights the importance of constraining the role of regional tectonics when interpreting shoreline shifts.  相似文献   
320.
The geological record of the Neoproterozoic to early Palaeozoic Proto-Tethyan Ocean in Southeast Asia is not clear. To better constrain the evolution of the Proto-Tethys, we present new geochronology, geochemistry, and petrology of the late Cambrian to Ordovician Pinghe pluton monzogranite from the Baoshan block, western Yunnan, southwest China. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of four zircon samples yield ages of 482–494 and 439–445 Ma for the pluton, interpreted as two episodes within one magmatic event accompanying the whole process of subduction–collision–orogeny between buoyant blocks and oceanic crust of the Proto-Tethys. The monzogranite belongs to the strong peraluminous, high-K, calc-alkaline series and shows characteristics of both I-type and S-type granitic rocks. It is characterized by extremely high Rb/Sr and Rb/Ba but low TiO2, MgO, FeOt, and CaO/Na2O ratios. The monzogranite is also moderately enriched in light rare earth elements (LREEs), depleted in heavy rare earth elements (HREEs), lacks HREE fractionation, and has strongly negative Eu (Eu/Eu* = 0.06–0.49), Ba, Nb, Ta, Sr, and Ti anomalies. Whole-rock εNd(t) and εHf(t) values range from ?8.7 to ?11.6 and ?5.55 to ?9.58, respectively. Nd and Hf two-stage model ages range from 1.66 to 2.06 Ga and 2.14 to 3.00 Ga, respectively, with variable radiogenic 206Pb/204Pb(t) (16.547–18.705), 207Pb/204Pb(t) (15.645–15.765), and 208Pb/204Pb(t) (38.273–38.830). These signatures suggest that the monzogranite magma was derived from partial melting of heterogeneous metapelite, which was generated from Neoarchean to Palaeoproterozoic materials mixed with basaltic magma. The monzogranite magma underwent crystallization differentiation of plagioclase, K-feldspar, and ilmenite. Magmatism to form the Pinghe pluton occurred in a post-collisional setting. Based on the comparison of coeval granites throughout adjacent regions (e.g. Himalayan orogen, Lhasa Terrane, and parts of Gondwana supercontinent), we propose that the Baoshan block was derived from the northern Australian Proto-Tethyan Andean-type active continental margin of Gondwana and experienced subduction of the Proto-Tethyan oceanic crust and accretion of an outboard micro-continent. The Pinghe pluton could have formed when a subducting oceanic slab broke off during collision.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号