首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   11篇
  国内免费   76篇
地球物理   23篇
地质学   345篇
海洋学   4篇
综合类   1篇
自然地理   20篇
  2024年   1篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   16篇
  2019年   14篇
  2018年   11篇
  2017年   16篇
  2016年   12篇
  2015年   14篇
  2014年   12篇
  2013年   18篇
  2012年   18篇
  2011年   8篇
  2010年   4篇
  2009年   22篇
  2008年   24篇
  2007年   20篇
  2006年   21篇
  2005年   19篇
  2004年   32篇
  2003年   15篇
  2002年   14篇
  2001年   11篇
  2000年   10篇
  1999年   12篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   6篇
  1994年   10篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1988年   2篇
  1987年   1篇
  1980年   1篇
排序方式: 共有393条查询结果,搜索用时 15 毫秒
261.
This work considers the tectonics of the southeastern portion of the South American Platform based on new geological and geophysical grounds. For the last decade, only three (Amazonic, São Francisco and La Plata) of the many other cratonic blocks have been attributed/remarked to the South America portion for most of the usual Rodinia reconstitutions. The possibility of the existence of other blocks has rarely been mentioned. The postulation of the presence of a considerable Paleoproterozoic (pre-Brasiliano) fragment as part of Paraná Basin basement is highly probable. In order to infer the basement structure of Paraná Basin, previous to the sedimentation process, an isostatic modeling was applied to a large-scale gravity survey looking to correlate topographic and gravity anomalies caused by sub-surface loads. The Bouguer anomaly obtained from the gravity survey represents the crustal contribution of crystalline basement, in addition to the sedimentary and volcanic layers of the basin. Following the isostatic modeling and the basin load stripping, the residual anomaly allows observing similarities between the basement gravity signature and outcropping units. Besides, the stress pattern of the two earlier events obtained through the back stripping analysis presents a geographically coincident maximum, and a new E-SE high emerging for the second event, suggesting continuous change of the stress field as a precursor for South American plate rotation. The evident correlation between gravity highs and main attenuation suggests the presence of some pre-existing suture zones. The weakened lithosphere during Ordovician and Carboniferous provided the magma conduits to form in Early Cretaceous tectonic stress field pattern. The resultant mosaic of gravity blocks and the main faults site give support to the presence of this cratonic Proterozoic unit, here on referred to as the Paranapanema Block, which had been neglected in most of the models reported for the reconstruction of Gondwana (and Rodinia).  相似文献   
262.
西藏申扎地区德日昂玛-下拉剖面永珠组中上部和昂杰组的腕足类动物群可以与国内、外冈瓦纳相和亲冈瓦纳相地区的腕足类动物群进行对比,但又显示出其独特的一面。将其自下而上划分为4个组合,永珠组中上部为Reedoconcha xizangensis-Spinomartinia xainzaensis组合、Cimmeriella mucronata-Reedoconcha excellens组合和Trigonotreta magnifica-Bandoproductus in-termedia组合,昂杰组为Aulosteges ingens-Punctocyrtella nagmargensis组合。按照国内、外冈瓦纳相、亲冈瓦纳相地区及华夏特提斯地区腕足类的时代意见,永珠组中部腕足类组合的时代为晚石炭世巴斯基尔期,上部2个腕足类组合分别为早二叠世萨克马尔早期—萨克马尔晚期,昂杰组的腕足类组合的时代为早二叠世亚丁斯克期。  相似文献   
263.
Constraints on the timing of deformation within the Antarctic Ross orogenic belt are important for understanding early Paleozoic tectonic activity accompanying the assembly of Gondwana. One of the best areas for constraining the tectonic evolution of the Ross orogenic belt is the Holyoake Range in the central Transantarctic Mountains where previous work shows an abrupt change in the stratigraphic succession of the Cambrian Byrd Group possibly related to the inception of tectonism within the orogen at  515 Ma. To further constrain deformational timing, we conducted 40Ar–39Ar analyses on magmatic phases of the Holyoake Gabbro, which cross-cuts folded Lower Cambrian Shackleton Limestone of the Byrd Group. Our analyses yield average ages of 506.7 ± 3.6 Ma (2 sigma; MSWD = 0.9) and 504.1 ± 2.4 Ma (2 sigma; MSWD = 1.3) for hornblende from the early and late magmatic phases, respectively. Deformation of the Shackleton Limestone therefore occurred prior to 506.7 ± 3.6 Ma, which is  12 m.y. after the siliciclastic drowning of the carbonate platform inferred to record the start of Ross tectonism in the central Transantarctic Mountains. On a regional scale, the data are consistent with a short pulse of deformation, which was probably related to global plate motion changes following final suturing of East and West Gondwana.  相似文献   
264.
Numerous, thin-bedded, tabular pale-yellowish clay bands are interlayered with black shales in a biostratigraphically constrained Early Ordovician volcano-sedimentary succession at Famatina, western Argentina. This region was part of a fairly continuous upper-plate, convergent volcanic chain that fringed western Gondwana. Mineralogy on both clay and non-clay fractions, whole rock chemistry and field observations on these distinctive event-beds indicate that they originated as relatively coarse fallout tephras, altered first into bentonites and later, through burial metamorphism, into K-bentonites (metabentonites). These tephras were deposited as single crystals and glassy dust or pumiceous fragments in a restricted subtidal environment. The region of Famatina has previously been inferred as the source of abundant distal K-bentonites recorded in the adjacent lower-plate allochthonous Precordillera terrane. However, these K-bentonites within the proximal arc site were unknown and rather unexpected since they are generally better preserved like distal deposits, associated either with central vent plinian–ultraplinian eruptions or with accompanying co-ignimbrite ash clouds. Their chemistry and comparison with those K-bentonites in the Precordillera allow tracing an evolution from volcanic arcs into continental crust. K-bentonites described in this paper are much older than those recorded in the adjacent Precordillera terrane and seem to be associated with a first eruptive period along western Gondwana that has no counterpart in the Argentine Precordillera, suggesting a significant longitudinal separation between these two regions by the Early Ordovician.  相似文献   
265.
266.
Ancient Tethyan vestige extends from Alps, Kaebaiqn Mountain and eastward through Turkey, IranAfghanistan, and the middle and north of Tibetan Plateau, then turns to western Yunnan and Sichuan, andfinally ends at Zhongnan Peninsula. The PaleoTethyan is supposed as one eastward opened Oceanand superposed by tectonic deformation in the latestage of the late Mesozoic to Paleocene of Cenozoicand covered by Mesozoic and Cenozoic deposits. The Sanjiang region in southwestern China is in the…  相似文献   
267.
The granite plutons of Vattamalai (VT), Gangaikondan (GK) and Pathanapuram (PT) intruding granulite facies rocks in southern India were emplaced during the Late Neoproterozoic tectonothermal event. Feldspar thermometry of mesoperthites from the granites yield temperatures of 800–1000?°C indicating high- to ultrahigh-temperature conditions, comparable to similar estimates derived from some of the host granulite facies rocks in the region. This study reports results from a detailed investigation of fluid inclusions in the three granite plutons. Carbonic inclusions characterize the major fluid species in all the cases and their unique abundance in some of these plutons indicates up to 1 wt.% CO2. In most of the cases, the inclusions show a near-pure CO2 composition as deduced from melting temperatures which cluster close to ?56.6°C, and as confirmed by laser Raman spectroscopy. The VT granite preserves the highest density CO2 fluids among all the three plutons with a density up to 0.912 g?cm?3 (molar volume of 48.25 cm3?mol?1). A combination of CO2 isochores, feldspar thermometry data and dehydration melting curves, and liquidus for water-undersaturated granitic systems clearly bring out a genetic link between these granites and granulitic lower crust. The ultimate origin of the CO2-rich fluids is linked to sub-lithospheric mantle sources through tectonic processes associated with the assembly of the Gondwana supercontinent. To cite this article: M. Santosh et al., C. R. Geoscience 337 (2005).  相似文献   
268.
Crystalline rocks from the Sierra de Comechingones, eastern Sierras Pampeanas, evolved through three distinct orogenic cycles during the Eopalaeozoic: (1) the first tectono-thermal event named Pampean orogeny (550 to 505 Ma), which peaked in the Early Cambrian, was responsible for extensive metamorphism, partial melting, juvenile magmatism, rapid decompression, and persistent tectonic activity. Large part of the crustal section that was residing at middle levels (c. 27 km) was heated above 800 °C during the thermal peak stage of the Pampean orogeny; decompression of the Pampean orogen's core took place at this high temperature. The exhumation mechanism that assisted rapid uplifting combined the effects of ongoing tectonic forces with a buoyant instability created by a large amount of anatectic magmas in the middle to lower crust. (2) Beginning at the Early Ordovician, the Famatinian orogeny produced an overall shortening, causing pervasive textural reworking of the Cambrian metamorphic sequences under a high-strain regime. By being adjacent to the Famatinian magmatic arc, the western border of the Cambrian crystalline package absorbed imposed deformation along a crustal scale ductile shear zone. Within this zone, the high-grade metamorphic rocks were reworked and re-hydrated to lower temperature assemblages (<600°C and 3–6 kbar). Early Ordovician subduction-related igneous activity, even though manifested as small plutons, intruded Cambrian crystalline sequences, and experienced textural reworking during Late Famatinian tectonic exhumation. Late Famatinian convergence resulted in west-vergent ductile shear zones that placed Cambrian onto Ordovician crystalline sequences. (3) During post-Famatinian times (360–400 Ma) enduring crustal perturbation produced intra-crustal-derived granitic magmatism. West- to northwest-directed thrusting was concentrated in belts nucleated along crustal-scale tectonic boundaries formed between older tectono-stratigraphic units. As a result, Devonian anatectic granites were formed and tectonically extruded among Pampean and Famatinian crystalline sequences. The post-Famatinian event is also characterised by the intrusion of batholith-scale monzogranites into Pampean and Famatinian crystalline sequences residing in the upper crust.

Crystalline rocks currently exposed in the Sierra de Comechingones show that they crystallised and were exhumed in a setting where tectono-thermal activity lasted, even though it might have waned, until the Middle Palaeozoic. From the latest Neoproterozoic (c. 550 Ma) until the Late Devonian (c. 360 Ma) tectonic activity was intermittently acting, indicating continuous convergence along the proto-Pacific margin of Gondwana.  相似文献   

269.
270.
The hypothesis of exotic terranes in Perú, Bolivia, Argentina and Chile generated discussions on the mode of transfer and extent of accretional events that may have occurred in the southern Andes during the Late Proterozoic–Early Paleozoic. Initially, a tectogenesis based on autochthonous mobile fold belts was discussed. Following ideas emphasised the fragmentation of the supercontinent Rodinia, Laurentia moving along the West Gondwana border and colliding with the Gondwana western margin. The most important effect of this Laurentia/Gondwana relationship was attributed to the Argentine Precordillera (or Cuyania) terrane splitting off from Laurentia and docking to Gondwana in the Early Paleozoic. In this study, the most cited arguments for this Laurentia/Precordillera relationship are discussed, emphasising paleontological considerations. It is shown that these arguments do not exclude a close original vicinity of the Precordillera terrane to Gondwana.The Precordillera terrane is suggested to be part of a hypothetical platform, which developed between South America, Africa and Antarctica (SAFRAN platform), and which was displaced to its actual position by transcurrent faults. The collisional events in the Sierras Pampeanas ensued from strike–slip movements and were responsible for the S and I type transpressional magmatism along the Pampean and Famatinian terranes. The final result of this continent-parallel movement of terrane slices is similar to that of a terrane split off from Laurentia, but the first-named way of formation easier explains the general continuity of plate convergence at the western border of Gondwana than the Laurentia/Precordillera connection does.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号