首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   11篇
  国内免费   76篇
地球物理   23篇
地质学   345篇
海洋学   4篇
综合类   1篇
自然地理   20篇
  2024年   1篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   16篇
  2019年   14篇
  2018年   11篇
  2017年   16篇
  2016年   12篇
  2015年   14篇
  2014年   12篇
  2013年   18篇
  2012年   18篇
  2011年   8篇
  2010年   4篇
  2009年   22篇
  2008年   24篇
  2007年   20篇
  2006年   21篇
  2005年   19篇
  2004年   32篇
  2003年   15篇
  2002年   14篇
  2001年   11篇
  2000年   10篇
  1999年   12篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   6篇
  1994年   10篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1988年   2篇
  1987年   1篇
  1980年   1篇
排序方式: 共有393条查询结果,搜索用时 15 毫秒
151.
东北地块群:构造演化与古大陆重建   总被引:7,自引:0,他引:7  
东北地区位于西伯利亚板块、华北板块和太平洋板块之间,为"中亚造山带"的东段和太平洋构造域的叠加部位,因此东北地块群构造属性和背景的研究对深入探讨二大构造域的叠加与转化背景具有重要的理论意义。东北地块群从东到西可细分佳木斯兴凯、松辽、兴安和额尔古纳四大地块,这些地块具有相同的新元古代泛非期变质基底,而古生代沉积岩也存在一定的可比性,表明这些地块存在相同或者相似的构造演化背景。分割这些地块的构造边界特征为:1)额尔古纳与兴安地块的缝合带为早古生代头道桥-新林缝合带,而非中生代德尔布干断裂;2)兴安地块与松辽地块之间的贺根山黑河缝合带形成时代为晚石炭世(330~300 Ma),而非最近报道的中生代;3)古亚洲洋分布在东北陆块群与华北板块之间,沿西拉木伦-长春缝合带闭合,时代为三叠纪;4)佳木斯兴凯地块与松辽地块之间的吉黑高压带形成于古亚洲构造域与环太平洋构造域转换的关键时期(210~180 Ma);5)那丹哈达增生杂岩为中国境内古太平洋板块俯冲增生的唯一直接证据,并记录了晚三叠早白垩世古太平洋板块向欧亚大陆俯冲增生的过程。在此基础上,分析了东北地块群发育的典型古生物和年代学标志,重建了东北地块群从Gondwana 大陆到Pangea大陆的位置与模型。  相似文献   
152.
In the Damodar Valley Basin, coalfields containing coal bearing Barakar Formation are Raniganj, Jharia, Bokaro, Ramgarh, and Karanpura. The Barakar Formation is composed of conglomerate, sandstone, siltstone, shale, fireclay, and coal. The lower part of Barakar Formation represents a braided channel deposit, and also in few places glacio-fluvial deposit which changes to meandering channel system with the formation of some ox-bow lake, and cut-off channel in the middle part. In a few places deltaic/brackish water condition possibly existed along with this meandering channel system. In the upper part of Barakar Formation, marine signatures are more prominant. Marine signatures/influences have been reported from Barakar Formation of Ramgarh, South Karanpura, and West Bokaro coalfields on the basis of trace fossil assemblage, sedimentation character, and trace element content. Although, definite marine signatures have not been observed from Jharia, and Raniganj coalfields, high concentration of boron, vanadium, and chromium, and presence of skolithos, and thalassinoides burrows possibly suggest a brackish water condition. The upper part clearly suggest that the sediments were deposited in a geographic setting very close to the sea or at the edge of the sea possibly in a peritidal setting where storm activity played a vital role during sedimentation which in turn suggests the presence of a broad shallow sea (epeiric/epicontinental sea) that develop during times of high sea level. The sea water possibly entered from the northeastern side as vast seaways or as embayment through the Damodar Valley which acted as a channel.  相似文献   
153.
Causes and consequences of the Cambrian explosion   总被引:1,自引:0,他引:1  
The Cambrian explosion has long been a basic research frontier that concerns many scientific fields.Here we discuss the cause-effect links of the Cambrian explosion on the basis of first appearances of animal phyla in the fossil record,divergence time,environmental changes,Gene Regulatory Networks,and ecological feedbacks.The first appearances of phyla in the fossil record are obviously diachronous but relatively abrupt,concentrated in the first three stages of the Cambrian period(541–514 Ma).The actual divergence time may be deep or shallow.Since the gene regulatory networks(GRNs)that control the development of metazoans were in place before the divergence,the establishment of GRNs is necessary but insufficient for the Cambrian explosion.Thus the Cambrian explosion required environmental triggers.Nutrient availability,oxygenation,and change of seawater composition were potential environmental triggers.The nutrient input,e.g.,the phosphorus enrichment in the environment,would cause excess primary production,but it is not directly linked with diversity or disparity.Further increase of oxygen level and change of seawater composition during the Ediacaran-Cambrian transition were probably crucial environmental factors that caused the Cambrian explosion,but more detailed geochemical data are required.Many researchers prefer that the Cambrian explosion is an ecological phenomenon,that is,the unprecedented ecological success of metazoans during the Early Cambrian,but ecological effects need diverse and abundant animals.Therefore,the establishment of the ecological complexity among animals,and between animals and environments,is a consequence rather than a cause of the Cambrian explosion.It is no doubt that positive ecological feedbacks could facilitate the increase of biodiversity.In a word,the Cambrian explosion happened when environmental changes crossed critical thresholds,led to the initial formation of the metazoan-dominated ecosystem through a series of knock-on ecological processes,i.e.,"ecological snowball"effects.  相似文献   
154.
The assembly of Late Neoproterozoice Cambrian supercontinent Gondwana involved prolonged subduction and accretion generating arc magmatic and accretionary complexes, culminating in collision and formation of high grade metamorphic orogens. Here we report evidence for mafic magmatism associated with post-collisional extension from a suite of gabbroic rocks in the Trivandrum Block of southern Indian Gondwana fragment. Our petrological and geochemical data on these gabbroic suite show that they are analogous to high Fe tholeiitic basalts with evolution of the parental melts dominantly controlled by fractional crystallization. They display enrichment of LILE and LREE and depletion of HFSE with negative anomalies at Zre Hf and Ti corresponding to subduction zone magmatic regime. The tectonic affinity of the gabbros coupled with their geochemical features endorse a heterogeneous mantle source with collective melt contributions from sub-slab asthenospheric mantle upwelling through slab break-off and arc-related metasomatized mantle wedge, with magma emplacement in subduction to post-collisional intraplate settings. The high Nb contents and positive Nbe Ta anomalies of the rocks are attributed to inflow of asthenospheric melts containing ancient recycled subducted slab components and/or fusion of subducted slab materials owing to upwelling of hot asthenosphere. Zircon grains from the gabbros show magmatic crystallization texture with low U and Pb content. The LA-ICPMS analyses show 206 Pb/238 U mean ages in the range of 507-494 Ma suggesting Cambrian mafic magmatism. The post-collisional mafic magmatism identified in our study provides new insights into mantle dynamics during the waning stage of the birth of a supercontinent.  相似文献   
155.
The metamorphic core of the Himalaya is composed of Indian cratonic rocks with two distinct crustal affinities that are defined by radiogenic isotopic geochemistry and detrital zircon age spectra. One is derived predominantly from the Paleoproterozoic and Archean rocks of the Indian cratonic interior and is either represented as metamorphosed sedimentary rocks of the Lesser Himalayan Sequence(LHS) or as slices of the distal cratonic margin. The other is the Greater Himalayan Sequence(GHS) whose provenance is less clear and has an enigmatic affinity. Here we present new detrital zircon Hf analyses from LHS and GHS samples spanning over 1000 km along the orogen that respectively show a striking similarity in age spectra and Hf isotope ratios. Within the GHS, the zircon age populations at 2800-2500 Ma,1800 Ma, 1000 Ma and 500 Ma can be ascribed to various Gondwanan source regions; however, a pervasive and dominant Tonianage population(~860-800 Ma) with a variably enriched radiogenic Hf isotope signature(eHf = 10 to-20) has not been identified from Gondwana or peripheral accreted terranes. We suggest this detrital zircon age population was derived from a crustal province that was subsequently removed by tectonic erosion. Substantial geologic evidence exists from previous studies across the Himalaya supporting the Cambro-Ordovician Kurgiakh Orogeny. We propose the tectonic removal of Tonian lithosphere occurred prior to or during this Cambro-Ordovician episode of orogenesis in a similar scenario as is seen in the modern Andean and Indonesian orogenies, wherein tectonic processes have removed significant portions of the continental lithosphere in a relatively short amount of time. This model described herein of the pre-Himalayan northern margin of Greater India highlights the paucity of the geologic record associated with the growth of continental crust. Although the continental crust is the archive of Earth history, it is vital to recognize the ways in which preservation bias and destruction of continental crust informs geologic models.  相似文献   
156.
Zircon and monazite U–Pb data document the geochronology of the felsic crust in the Mozambique Belt in NE Mozambique. Immediately E of Lake Niassa and NW of the Karoo-aged Maniamba Graben, the Ponta Messuli Complex preserves Paleoproterozoic gneisses with granulite-facies metamorphism dated at 1950 ± 15 Ma, and intruded by granite at 1056 ± 11 Ma. This complex has only weak evidence for a Pan-African metamorphism. Between the Maniamba Graben and the WSW–ENE-trending Lurio (shear) Belt, the Unango and Marrupa Complexes consist mainly of felsic orthogneisses dated between 1062 ± 13 and 946 ± 11 Ma, and interlayered with minor paragneisses. In these complexes, an amphibolite- to granulite-facies metamorphism is dated at 953 ± 8 Ma and a nepheline syenite pluton is dated at 799 ± 8 Ma. Pan-African deformation and high-grade metamorphism are more intense and penetrative southwards, towards the Lurio Belt. Amphibolite-facies metamorphism is dated at 555 ± 11 Ma in the Marrupa Complex and amphibolite- to granulite-facies metamorphism between 569 ± 9 and 527 ± 8 Ma in the Unango Complex. Post-collisional felsic plutonism, dated between 549 ± 13 and 486 ± 27 Ma, is uncommon in the Marrupa Complex but common in the Unango Complex. To the south of the Lurio Belt, the Nampula Complex consists of felsic orthogneisses which gave ages ranging from 1123 ± 9 to 1042 ± 9 Ma, interlayered with paragneisses. The Nampula Complex underwent amphibolite-facies metamorphism in the period between 543 ± 23 to 493 ± 8 Ma, and was intruded by voluminous post-collisional granitoid plutons between 511 ± 12 and 508 ± 3 Ma. In a larger context, the Ponta Messuli Complex is regarded as part of the Palaeoproterozoic, Usagaran, Congo-Tanzania Craton foreland of the Pan-African orogen. The Unango, Marrupa and Nampula Complexes were probably formed in an active margin setting during the Mesoproterozoic. The Unango and Marrupa Complexes were assembled on the margin of the Congo-Tanzania Craton during the Irumidian orogeny (ca. 1020–950 Ma), together with terranes in the Southern Irumide Belt. The distinctly older Nampula Complex was more probably linked to the Maud Belt of Antarctica, and peripheral to the Kalahari Craton during the Neoproterozoic. During the Pan-African orogeny, the Marrupa Complex was overlain by NW-directed nappes of the Cabo Delgado Nappe Complex before peak metamorphism at ca. 555 Ma. The nappes include evidence for early Pan-African orogenic events older than 610 Ma, typical for the Eastern Granulites in Tanzania. Crustal thickening at 555 ± 11 Ma is coeval with high-pressure granulite-facies metamorphism along the Lurio Belt at 557 ± 16 Ma. Crustal thickening in NE Mozambique is part of the main Pan-African, Kuunga, orogeny peaking between 570 and 530 Ma, during which the Congo-Tanzania, Kalahari, East Antarctica and India Cratons welded to form Gondwana. Voluminous post-collisional magmatism and metamorphism younger than 530 Ma in the Lurio Belt and the Nampula Complex are taken as evidence of gravitational collapse of the extensive orogenic domain south of the Lurio Belt after ca. 530 Ma. The Lurio Belt may represent a Pan-African suture zone between the Kalahari and Congo-Tanzania Craton.  相似文献   
157.
The cyclic arrangement of lithofacies of the Karharbari Formation of the Damuda Group from a part of the Talchir Gondwana basin has been examined by statistical techniques. The lithologies have been condensed into five facies states viz. coarse-, medium-, fine-grained sandstones, shale and coal for the convenience of statistical analyses. Markov chain analysis indicates the arrangement of Karharbari lithofacies in form of fining upward cycles. A complete cycle consists of conglomerate or coarse-grained sandstone at the base sequentially succeeded by medium-and fine-grained sandstones, shale and coal at the top. The entropy analysis categorizes the Karharbari cycles into the C-type cyclicity, which is essentially a random sequence of lithologic states. Regression analysis undertaken in the present study indicates the existence of sympathetic relationship between total thickness of strata (net subsidence) and number and average thickness of sedimentary cycle and antipathic relationship between number and average thickness of sedimentary cycle. These observations suggest that cyclic sedimentation of the Karharbari Formation was controlled by autocyclic process by means of lateral migration of streams activated by intrabasinal differential subsidence, which operated within the depositional basin and the channels carrying coarse grade clastic sediments, which make the cycles thicker, tend to be more common in the areas of maximum subsidence. Clastic sediments issued from the laterally migrating rivers interrupted the cyclic sedimentation of the Karharbari Formation in many instances.  相似文献   
158.
A detailed grain-size analysis of twenty-two sandstone samples from the uppermost Gondwana succession of Salbardi area has been carried out to interpret the depositional pattern. The sandstones are mainly medium to coarse grained, moderately sorted, near-symmetrical to fine-skewed and mesokurtic in nature. Inter-relationship of various parameters shows bimodal nature of sediments having dominance of medium sand. Based on the granulometric analysis, a fluvial environment of deposition is interpreted for the succession.  相似文献   
159.
This paper presents a case study of the sublacustrine precipitation of hydrothermal silica ± TiO2 in the Ediacaran Mançour Group of the Saghro inlier, Anti‐Atlas, Morocco. Lacustrine carbonates containing stromatolitic mats and bioherms occur in ephemeral ponds developed within the Oued Da'ra caldera. Its syn‐eruptive infill consists of pyroclastites, ashflow tuffs, and subsidiary lava flows and sills, whereas inter‐eruptive deposition is mainly represented by slope‐related debris‐flow breccias and landslides, alluvial fans and fluvial channels. Carbonate production took place in a mosaic of differentially subsiding, fault‐bounded intra‐caldera blocks controlled by episodic collapse‐induced drowning, pyroclastic blanketing and migration of alluvial/fluvial environments. After microbial carbonate production, the carbonates recorded several early‐diagenetic processes, punctuated by polyphase fissuring (controlling secondary permeability) locally linked to hydrothermal influx. Three generations of carbonate cements are recognisable: (i) fibrous, botryoidal and blocky/drusy mosaics of calcite; (ii) idiotopic mosaics of dolomite caused by flushing of hypersaline Mg‐rich brines; and (iii) euhedral to drusy calcite via dedolomitization. The δ13C and δ18O values from carbonate cements broadly become successively isotopically lighter, as a result of meteoric and hydrothermal influence, and were probably overprinted by the Panafrican‐3 phase that affected the top of the Mançour Group. Two mechanisms of silicification are involved: (i) early‐diagenetic occlusion of interparticle pores at the sediment/water interface of pyroclastic substrates and reefal core and flanks; and (ii) hydrothermal precipitation of silica ± TiO2 lining fissures and vuggy porosity encased in the host rock. Silica conduits cross‐cutting lacustrine mats and bioherms exhibit high potential of preservation in collapsed volcanic calderas. Primary fluid inclusions of hydrothermal silica contain brine relics with NaCl/CaCl2 ratios of 2·1 to 4·4, representing minimum entrapment temperatures of about 142 to 204°C, and abiotic hydrocarbons (heavy alkanes) related to serpentinization of the volcanic and volcanosedimentary basement of the Oued Dar'a caldera.  相似文献   
160.
Cambro-Ordovician palaeogeography and fragmentation of the North Gondwana margin is still not very well understood. Here we address this question using isotopic data to consider the crustal evolution and palaeogeographic position of the, North Gondwana, Iberian Massif Ossa–Morena Zone (OMZ). The OMZ preserves a complex tectonomagmatic history: late Neoproterozoic Cadomian orogenesis (ca. 650–550 Ma); Cambro-Ordovician rifting (ca. 540–450 Ma); and Variscan orogenesis (ca. 390–305 Ma). We place this evolution in the context of recent North Gondwana Cambro-Ordovician palaeogeographic reconstructions that suggest more easterly positions, adjacent to the Sahara Metacraton, for other Iberian Massif zones. To do this we compiled an extensive new database of published late Proterozoic–Palaeozoic Nd model ages and detrital and magmatic zircon age data for (i) the Iberian Massif and (ii) North Gondwana Anti-Atlas West African Craton, Tuareg Shield, and Sahara Metacraton. The Nd model ages of OMZ Cambro-Ordovician crustal-derived magmatism and Ediacaran-Ordovician sedimentary rocks range from ca. 1.9 to 1.6 Ga, with a mode ca. 1.7 Ga. They show the greatest affinity with the Tuareg Shield, with limited contribution of more juvenile material from the Anti-Atlas West African Craton. This association is supported by detrital zircons that have Archaean, Palaeoproterozic, and Neoproterozoic radiometric ages similar to the aforementioned Iberian Massif zones. However, an OMZ Mesoproterozoic gap, with no ca. 1.0 Ga cluster, is different from other zones but, once more, similar to the westerly Tuareg Shield distribution. This places the OMZ in a more easterly position than previously thought but still further west than other Iberian zones. It has been proposed that in the Cambro-Ordovician the North Gondwana margin rifted as the Rheic Ocean opened diachronously from west to east. Thus, the more extensive rift-related magmatism in the westerly OMZ than in other, more easterly, Iberian Massif zones fits our new proposed palaeogeographic reconstruction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号