首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
地球物理   1篇
地质学   16篇
海洋学   1篇
自然地理   2篇
  2017年   12篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有20条查询结果,搜索用时 20 毫秒
11.
This paper summarises the 19th Century research conducted in the Lochaber area and which sought to answer the enigma of the Parallel Roads of Glen Roy. This should be seen as an introduction to the main theories that were developed by a number of scientists, including Darwin, Agassiz and Jamieson. They considered the landforms to be a product of either lacustrine, marine or glaciolacustrine processes, the latter of which proposed by Jamieson, became the accepted explanation by the end of the century.  相似文献   
12.
Glen Roy, Lochaber is a key UK site for understanding Late Devensian environmental change, as it contains an annually-resolved glaciolacustrine varve record. This paper develops our understanding of varve sedimentation within Glen Roy through the examination of a new varve sequence located in a more proximal position on the Allt Bhraic Achaidh Fan, one of a series of major fans within the valley. This new varve record consists of c. 203 annual layers, much fewer years than at other sites in the Lochaber area probably due to five significant hiatuses within the record. Varve sediment characteristics and thickness are comparable to, but not statistically correlated with, other varve series that were used to construct a consolidated varve record for the area, the Lochaber Master Varve Chronology. Sedimentological characteristics, analysed by thin section micromorphology, suggest that varve thickness changes within the basin are controlled mainly by distance from the valley sides rather than the position of the ice margin during the Loch Lomond Readvance, as previously proposed.  相似文献   
13.
Glen Roy is a classic geosite for ice-dammed lake shorelines, the Parallel Roads, and associated features formed during the Loch Lomond (Younger Dryas) Stade (12.9–11.7 ka). The area played a key part in the development of the glacial theory in the early 19th century and continues today to have outstanding scientific value for understanding the processes and timing of events at the end of the last glaciation. Glen Roy has also been long-appreciated as an awe-inspiring visitor attraction, and is now a flagship site for geotourism within Lochaber Geopark. Statutory geoconservation in Glen Roy, beginning in the second half of the 20th century, was founded on the exceptional scientific value of the area. The history and practice of geoconservation in Glen Roy illustrate the contested values of geoheritage and the evolving approaches adopted. Important lessons include the need for open dialogue and partnership working among the local community, land owners and managers, the statutory conservation agency (Scottish Natural Heritage), Lochaber Geopark and the scientific community.  相似文献   
14.
Little is known about Holocene river terrace development in upland Scottish valleys. Interpretation of many of the terrace sequences, previously suggested to have been formed by meltwaters either from the last Scottish ice sheet or the Loch Lomond Advance, has generally been based on morphological data. In this paper an alternative approach to the traditional height-based method of terrace correlation and dating is presented using data from Glen Feshie, western Cairngorms. Terrace fragments are numerically classified and objectively grouped using quantitative soil-stratigraphic data. Principal Components Analysis is used to both quantify pedological data and separate temporal trends in the data from variance due to local site factors. The scores on the temporal component are used to derive soil-stratigraphic units developed on the surficial sediments of the Glen Feshie terraces by grouping soil sites using a hierarchical clustering technique. This provides evidence for at least five soil-stratigraphic units developed on the fluvial surfaces. Various methods of absolute dating control permits association of these surfaces with five phases of terrace development. These are placed tentatively at 13 000, 10 000, 3600, 1000, and 80 radiocarbon years B.P., suggesting at least three phases of valley floor incision in Glen Feshie during the late Holocene.  相似文献   
15.
A sedimentological investigation of new sections of Loch Lomond Stadial (LLS) age deposits is presented from Caol Lairig valley, located adjacent to Glen Roy, Lochaber, Scottish Highlands. The ice lobes in Caol Lairig and Glen Roy blocked local fluvial drainage systems forming lakes that cut shorelines, the ‘Parallel Roads of Glen Roy’ (Agassiz, 1840; Jamieson, 1863, 1892). Within Caol Lairig sediment sequences of proximal, distal and deltaic glaciolacustrine sediments and a subglacial till are reported. The till was deposited during ice advance into the valley and the different glaciolacustrine facies formed in the gap between the head of Caol Lairig and the receding ice margin. When the sediments are related to the shoreline and glacial geomorphological evidence, phases of ice advance and ice retreat and the concomitant changes in lake levels are identified. Initially ice retreat in Glen Roy and Caol Lairig was synchronous but after the fall to 325 m the ice in Glen Roy retreated more quickly than in Caol Lairig. Differences in the ice thickness and the lake water depth in Glen Roy and Caol Lairig may have lead to preferential calving of the Glen Roy ice margin hastening ice retreat.  相似文献   
16.
This paper presents the results of an investigation of early Holocene cryptotephra layers recovered from sediments in two kettle-hole basins at Inverlair (Glen Spean) and Loch Etteridge (Glen Fernisdale). Electron probe micro-analysis (EPMA) of shards from two cryptotephra layers revealed that the uppermost layer in both sequences has a composition similar to the An Druim tephra, first reported from a site in Northern Scotland. We present evidence that distinguishes the An Druim from the chemically very similar early Holocene Ashik tephra. The lowermost layer at Inverlair matches the composition of the Askja-S tephra found in the Faroe Islands, Ireland, Sweden, Germany and Switzerland. This is the first published record of the Askja-S tephra from mainland Scotland. As at other sites, the Askja-S seems to mark a short-lived climatic deterioration, most likely the Pre-Boreal Oscillation: at Inverlair it occurs just above an oscillation represented by a reduction in LOI values and in the abundance of Betula pollen, and by a peak in Juniperus pollen. The lowermost layer at Loch Etteridge has a Katla-type chemistry and extends through the upper part of the Loch Lomond (Younger Dryas/GS-1) Stadial to the Stadial/Holocene transition; it may represent a composite layer which merges the Vedde and Abernethy tephras. One of the key conclusions is that the glacial-melt deposits in the vicinity of Inverlair (kames and kame terraces) were ice-free by c. 10.83 ka (the age of the Askja-S), providing a limiting age on the disappearance of LLR ice in Glen Spean.  相似文献   
17.
This paper summarises the evidence for glacial ice advance into lower Glen Spean during the Loch Lomond Stadial which involved the blockage of westward-flowing drainage to form a series of ice-dammed lakes, the former surfaces of which are marked by prominent shorelines. Detailed mapping of glacigenic landforms and instrumental levelling of the shorelines reveals a dynamic interplay between the glacier margins and lake formation. Subsequent deglaciation led to lowering of the lake levels, at times by catastrophic drainage beneath the ice (jökulhlaup). The abandoned shorelines have been warped and dislocated in numerous places as a result of glacio-isostatic deformation, faulting and landslip activity. The pattern of retreat of the ice can be deduced from the mapped distributions of retreat moraines and the levelled altitudes of numerous kame and fluvial terrace fragments. The sequence of events outlined in this paper provides important context for understanding the evolution of the landscape of the Glen Roy area during the Loch Lomond Stadial, and a prelude to more recent studies reported in other contributions to this thematic issue.  相似文献   
18.
Large bodies of fluidized sandstone occur in the Jurassic Entrada, Carmel, Page and Navajo Formations at several locations in south‐central Utah. They are most abundant in the Entrada Sandstone, where they commonly occur in clusters, have a cylindrical form and have a sharp contact with their cross‐bedded host rock. These clastic pipes are as wide as 75 m and have exposed heights of as much as 100 m. Some of the Entrada pipes extend well into the underlying Carmel redbeds. Other clastic pipes in the Entrada Sandstone are less deformed and display various degrees of brittle‐to‐hydroplastic deformation and liquefaction. Clastic pipes in the Page and Navajo Sandstones are less common, but are similar in size and form to those in the Entrada and Carmel, and probably have a similar origin. Some massive sandstone bodies are irregular in form and have tongue‐like projections into the host rock, implying forcible injection of fluidized sand. Several pipe–host contacts in the Entrada Sandstone display small‐scale ring faults. Where relative displacement can be clearly demonstrated, pipe sandstones are invariably down‐faulted, locally as much as 5 m. At two sites, Carmel host rock is upwarped around the Entrada pipes. Stratified and cross‐bedded breccia blocks occur in many Entrada pipes, and preliminary petrographic analysis indicates that at least some of these breccia blocks are derived from the host rock. Homogeneous pipe sandstones are also petrographically similar to their Entrada host rock, suggesting that some pipes originate through fluidization of the fine‐grained Entrada. Fluidization of the Entrada must have occurred in a water‐saturated environment during early diagenesis but before complete lithification, most probably under considerable porewater pressure. Although there are no known modern analogues to these huge masses of structureless sandstone, they may have a small‐scale modern counterpart in earthquake‐induced sandblows. These features were most probably caused by large‐magnitude seismic events during the Middle Jurassic, although other possibilities cannot be ruled out at this point.  相似文献   
19.
The Glen Eden Mo-Sn-W deposit in north-eastern New South Wales, Australia, is an example of a leucogranite-related, low-grade, large-tonnage hydrothermal system. It occurs in the southern part of the New England Orogen and is hosted within Permian felsic volcanic rocks, intruded at depth by dykes of porphyritic microleucogranite (Glen Eden Granite). The deposit is hosted within a pipe-like quartz-rich greisen breccia body about 500 m in diameter, surrounded by a greisen zone several hundred metres across, zoning out into altered volcanic rocks. The dominant ore minerals, largely hosted as open space fillings and disseminations in quartz and quartz-rich greisen, are molybdenite, wolframite and cassiterite; they are accompanied by minor to trace amounts of muscovite, fluorite, topaz, siderite, pyrrhotite, arsenopyrite, chalcopyrite, sphalerite, bismuth, bismuthinite, joseite A, cosalite, galenobismutite, beryl, anatase and late-stage dickite and kaolinite. Two types of breccia are recognised: (1) greisenised volcanic rock fragments (quartz + muscovite), cemented by hydrothermal quartz ± K-feldspar ± ore minerals, and (2) fragments of hydrothermal quartz ± cassiterite ± wolframite enclosed in quartz ± clay. In both types of breccia and in stockwork veins, there is evidence of early precipitation of Mo-Sn-W phases, followed by Bi minerals and base metal sulfides (± fluorite, siderite).Breccia formation and associated hydrothermal alteration (greisen, potassic, argillic, propylitic) are interpreted to be related to devolatilisation of the highly fractionated Glen Eden Granite of early Triassic age (240±1 Ma based on 40Ar/39Ar geochronology of greisen muscovite) as well as to fluid mixing with meteoric waters. The breccia pipe could have formed in part by rock dissolution and collapse, as well as by explosive degassing of boiling fluids. Fluid inclusion evidence is consistent with boiling, with breccia pipe formation and mineralisation having mainly occurred at 250–350 °C from fluids with salinity of 0.4–9 wt% NaCl equivalent in the dilute types and 30–47 wt% NaCl equivalent in the hypersaline types. Stable isotopic evidence (O, D, C, S) indicates a strong magmatic contribution to the hydrothermal fluids and metals in the breccia. The 18O values of quartz decrease outward from the breccia pipe (10.6–12.3 in the pipe to 3.4–8.7 in the peripheral quartz) indicating that there has been mixing with isotopically light (high latitude) meteoric fluids, mainly after formation of the breccia pipe.  相似文献   
20.
This paper introduces a special issue devoted to the sequence of events in and around Glen Roy during the Loch Lomond or Younger Dryas Stadial, the short but important cold period dated to between ∼12,900 and 11,700 years ago, during which glaciers last expanded to occupy the Scottish Highlands, and during the subsequent transition to warmer conditions at the start of the Holocene. The Glen Roy area is internationally famous for the ‘Parallel Roads’, pre-eminent examples of ice-dammed lake shorelines which were formed during the stadial. What makes these shorelines unique, however, is their role as distinctive time markers, allowing the order of formation of landforms and sediments to be construed with unprecedented detail. Varved lake sediments preserved within Glen Roy and nearby Loch Laggan provide a precise timescale – the Lochaber Master Varve Chronology (LMVC) – for establishing the rates and timing of some of the events. This introductory paper first sets the geological context for those new to this topic, with a digest of key advances in understanding made between the nineteenth century and the publication of the LMVC in 2010. It then summarises the evidence and ideas that have emerged from new research investigations reported in this special issue for the first time, and which shine new light on the subject. Two final sections synthesise the new data and consider future prospects for further refinement of the precise sequence and timing of events. A major conclusion to emerge from this new body of work is that the ice-dammed lakes, and the glaciers that impounded them, persisted in the area until around 11,700 to perhaps 11,600 years ago. This conflicts with recently promoted suggestions that the last glaciers in Scotland were already in a state of considerable decline by ∼12,500 years ago.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号