首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   393篇
  免费   49篇
  国内免费   32篇
测绘学   4篇
大气科学   16篇
地球物理   59篇
地质学   271篇
海洋学   21篇
天文学   6篇
综合类   7篇
自然地理   90篇
  2024年   1篇
  2023年   1篇
  2022年   7篇
  2021年   8篇
  2020年   9篇
  2019年   19篇
  2018年   6篇
  2017年   19篇
  2016年   13篇
  2015年   16篇
  2014年   19篇
  2013年   22篇
  2012年   10篇
  2011年   23篇
  2010年   22篇
  2009年   27篇
  2008年   47篇
  2007年   30篇
  2006年   33篇
  2005年   30篇
  2004年   14篇
  2003年   8篇
  2002年   12篇
  2001年   10篇
  2000年   9篇
  1999年   7篇
  1998年   5篇
  1997年   4篇
  1996年   1篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1983年   1篇
排序方式: 共有474条查询结果,搜索用时 125 毫秒
211.
A combined geomorphological–physical model approach is used to generate three‐dimensional reconstructions of glaciers in Pacific Far NE Russia during the global Last glacial Maximum (gLGM). The horizontal dimensions of these ice masses are delineated by moraines, their surface elevations are estimated using an iterative flowline model and temporal constraints upon their margins are derived from published age estimates. The equilibrium line altitudes (ELAs) of these ice masses are estimated, and gLGM climate is reconstructed using a simple degree–day melt model. The results indicate that, during the gLGM, ice masses occupying the Pekulney, Kankaren and Sredinny mountains of Pacific Far NE Russia were of valley glacier and ice field type. These glaciers were between 7 and 80 km in length, and were considerably less extensive than during pre‐LGM phases of advance. gLGM ice masses in these regions had ELAs of between 575 ± 22 m and 1035 ± 41 m (above sea level) – corresponding to an ELA depression of 350–740 m, relative to present. Data indicate that, in the Pekulney Mountains, this ELA depression occurred because of a 6.4°C reduction in mean July temperature, and 200 mm a?1 reduction in precipitation, relative to present. Thus reconstructions support a restricted view of gLGM glaciation in Pacific Far NE Russia and indicate that the region's aridity precluded the development of large continental ice sheets. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
212.
A high‐resolution, multiproxy record encompassing the last glacial–interglacial transition is presented for Native Companion Lagoon, a coastal site in subtropical eastern Australia. Rates of aeolian sedimentation in the lake were established by trace element analyses of lacustrine sediments and used as a proxy for aridity. In conjunction with sediment moisture content, charcoal and pollen these provide a multi‐decadal record of palaeoenvironmental variability for the period 33–18 k cal. yr BP. Results indicate that the Last Glacial Maximum in eastern Australia spanned almost 10 k cal. yr, and was characterised by two distinct cold dry events at approximately 30.8 k cal. yr BP and 21.7 k cal. yr BP. Provenance of selected sediment samples by trace element geochemical fingerprinting shows that continental sourced aeolian sediments originated primarily from South Australia during these cold events and from sites in central Australia during the intervening time. Used in combination with a pollen record, the provenance of long‐travelled dust to mainland sites shows that the two cold events were characterised by frequent meridional dry southwesterly winds rather than zonal westerly airflow as previously believed. The intervening period was cool and humid, which we infer as being associated with more frequent southeasterly winds of maritime origin. These results lend support to previous research that indicates the Southern Hemisphere experienced a period of widespread climatic amelioration at the height of the last glacial known as the Antarctic Isotopic Maximum. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
213.
The UK37′ index has proven to be a robust proxy to estimate past sea surface temperatures (SSTs) over a range of time scales, but like any other proxy, it has uncertainties. For instance, in reconstructions of the Last Glacial Maximum (LGM) in the northern North Atlantic, UK37′ indicates higher temperatures than those derived from foraminiferal proxies. Here we evaluate whether such warm glacial estimates are caused by the advection of reworked alkenones in ice‐rafted debris (IRD) to deep‐sea sediments. We have quantified both coccolith assemblages and alkenones in sediments from glaciogenic debris flows in the continental margins of the northern North Atlantic, and from a deep‐sea core from the Reykjanes Ridge. Certain debris flow deposits in the North Atlantic were generated by the presence of massive ice‐sheets in the past, and their associated ice streams. Such deposits are composed of the same materials that were present in the IRD at the time they were generated. We conclude that ice rafting from some locations was a transport pathway to the deep sea floor of reworked alkenones and pre‐Quaternary coccolith species during glacial stages, but that not all of the IRD contained alkenones, even when reworked coccoliths were present. We speculate that the ratio of reworked coccoliths to alkenone concentration might be useful to infer whether significant reworked alkenone inputs from IRD did occur at a particular site in the glacial North Atlantic. We also observe that alkenones in some of the debris flows contain a colder signal than estimated for LGM sediments in the northern North Atlantic. This is also clear in the deep‐sea core studied where the warmest intervals do not correspond to the intervals with large inputs of reworked coccoliths or IRD. We conclude that any possible bias to UK37′ estimates associated with reworked alkenones is not necessarily towards higher values, and that the high SST anomalies for the LGM are unlikely to be the result of a bias caused by IRD inputs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
214.
The occurrence of the Younger Dryas cold reversal in northern South America midlands and lowlands remains controversial. We present a palaeoecological analysis of a Late Glacial lacustrine section from a midland lake (Lake Chonita, 4.6501 °N, 61.0157 °W, 884 m elevation) located in the Venezuelan Gran Sabana, based on physical and biological proxies. The sediments were mostly barren from ~15.3 to 12.7 k cal a BP, probably due to poor preservation. A ligneous community with no clear modern analogues was dominant from 12.7 to 11.7 k cal a BP (Younger Dryas chronozone). At present, similar shrublands are situated around 200 m elevation above the lake, suggesting a cooling‐driven downward shift in vegetation during that period. The interval from 11.7 to 10.6 k cal a BP is marked by a dramatic replacement of the shrubland by savannas and a conspicuous increase in fire incidence. The intensification of local and regional fires at this interval could have played a role in the vegetation shift. A change to wetter, and probably warmer, conditions is deduced after 11.7 k cal a BP, coinciding with the early Holocene warming. These results support the hypothesis of a mixed origin (climate and fire) of the Gran Sabana savannas, and highlight the climatic instability of the Neotropics during the Late Glacial. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
215.
This study presents results from geomorphological mapping and cosmogenic radionuclide dating (10Be) of moraine sequences at Otgon Tenger (3905 m), the highest peak in the Khangai Mountains (central Mongolia). Our findings indicate that glaciers reached their last maximum extent between 40 and 35 ka during Marine Oxygen Isotope Stage (MIS) 3. Large ice advances also occurred during MIS-2 (at ~ 23 and 17–16 ka), but these advances did not exceed the limits reached during MIS-3. The results indicate that climatic conditions during MIS-3, characterized by a cool-wet climate with a greater-than-today input from winter precipitation, generated the most favorable setting for glaciation in the study region. Yet, glacial accumulation also responded positively to the far colder and drier conditions of MIS-2, and again during the last glacial–interglacial transition when precipitation levels increased. Viewed in context of other Pleistocene glacial records from High Asia, the pattern of glaciation in central Mongolia shares some features with records from southern Central Asia and NE-Tibet (i.e. ice maxima during interstadial wet phases), while other features of the Mongolian record (i.e. major ice expansion during the MIS-2 insolation minimum) are more in tune with glacier responses known from Siberia and western Central Asia.  相似文献   
216.
Branched glycerol dialkyl glycerol tetraether (GDGT) distributions observed in a sediment core from Lake McKenzie were utilized to quantitatively reconstruct the pattern of mean annual air temperature (MAAT) from coastal subtropical eastern Australia between 37 and 18.3 cal ka BP and 14.0 cal ka BP to present. Both the reconstructed trend and amplitude of MAAT changes from the top of the sediment core were nearly identical to a local instrumental MAAT record from Fraser Island, providing confidence that in this sediment core branched GDGTs could be used to produce a quantitative record of past MAAT. The reconstructed trend of MAAT during 37 to 18.3 cal ka BP and timing of the Last Glacial Maximum (LGM) in the Lake McKenzie record were in agreement with previously published nearby marine climate records. The amplitude of lower-than-present MAAT during the LGM potentially provides information on the latitude of separation of the Tasman Front from the East Australian current in the subtropical western Pacific. The Lake McKenzie record shows an earlier onset of near modern day warm temperatures in the early Holocene compared to marine records and the presence of a warmer than present day period during the mid-Holocene.  相似文献   
217.
正Introduction A 405-cm sediment section GM02 from Gomo Co salt lake in the northern Tibetan Plateau was used to reconstruct climate changes during marine isotope stage(MIS)2,including the Last Glacial Maximum(LGM)and last  相似文献   
218.
本文利用古气候模式比较计划第三阶段(PMIP3)中MPI-ESM模式模拟输出,采用主分量分析、回归分析、多窗谱分析等方法,探讨了中全新世(MH)和末次盛冰期(LGM)北大西洋涛动(NAO)变化及其与亚洲降水的关系.结果表明:MH冬季NAO较现代有轻微增大,南部高压中心东移;而LGM冬季NAO明显减弱,南北气压活动中心转为西南-东北走向.MH冬季强NAO信号可通过海洋记忆效应持续至夏季,并以准静止Rossby波形式传至东亚地区,导致乌拉尔山和鄂霍次克海阻高增强、贝加尔湖低压加深,这种倒“Ω”流场增强有利于冷空气南下,并通过热成风原理使得副热带西风急流增强,急流南侧产生上升异常,有利于该区降水产生;而LGM时NAO减弱引起夏季倒“Ω”流场减弱,冷空气南下弱于现代,使得副热带西风急流减弱,其南侧产生下沉异常,最终抑制降水.因此,MH和LGM两阶段的NAO引起大气环流的变化可能对亚洲夏季降水产生影响.  相似文献   
219.
The history of glacial advances and retreats of the East Antarctic ice sheet during the Holocene is not well-known, due to limited field evidence in both the marine and terrestrial realm. A 257-cm-long sediment core was recovered from a marine inlet in the Rauer Group, East Antarctica, 1.8 km in front of the present ice-sheet margin. Radiocarbon dating and lithological characteristics reveal that the core comprises a complete marine record since 4500 yr. A significant ice-sheet expansion beyond present ice margins therefore did not occur during this period.  相似文献   
220.
The deposits of Glacial Lake Quincy overlie a diamicton associated with the classically defined Illinoian limit in central Indiana. This lake covered at least 180 km2 with a depth of > 20 m and developed when the Illinoian ice sheet retreated 15 km from the maximum limit, causing lake impoundment against Devore Ridge. Overflow from Glacial Lake Quincy eroded across the ridge forming a number of steeped-walled outlets. A section along Mill Creek exposes a sedimentologic sequence associated with Glacial Lake Quincy from a subglacial diamicton to ice-proximal to ice-distal glacial lacustrine sediments. We report new optical ages by multiple aliquot regenerative dose procedure for the fine-grained rhythmically bedded sediments presumed to represent the lowest energy depositional facies, dominated by suspension settling, which maximized sunlight exposure. In turn, optical ages were determined on the fine-grained (4-11 μm) polymineral and quartz fractions under infrared and blue excitation, which yielded statistically similar ages. Optical ages span from ca. 170 to 108 ka, with the average of 16 optical ages indicating deglaciation at ca. 135 ka, generally coincident with Marine Oxygen Isotope Stage 6-to-5 transition and rise in global sea level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号