首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   419篇
  免费   55篇
  国内免费   33篇
测绘学   4篇
大气科学   19篇
地球物理   66篇
地质学   280篇
海洋学   28篇
天文学   6篇
综合类   9篇
自然地理   95篇
  2024年   1篇
  2023年   2篇
  2022年   8篇
  2021年   8篇
  2020年   12篇
  2019年   20篇
  2018年   7篇
  2017年   20篇
  2016年   13篇
  2015年   16篇
  2014年   22篇
  2013年   23篇
  2012年   10篇
  2011年   23篇
  2010年   25篇
  2009年   29篇
  2008年   47篇
  2007年   30篇
  2006年   36篇
  2005年   32篇
  2004年   17篇
  2003年   9篇
  2002年   13篇
  2001年   11篇
  2000年   11篇
  1999年   8篇
  1998年   5篇
  1997年   4篇
  1996年   1篇
  1995年   5篇
  1994年   7篇
  1993年   3篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   2篇
  1983年   1篇
排序方式: 共有507条查询结果,搜索用时 67 毫秒
341.
During the late Wisconsin, glacial flour from alpine glaciers along the east side of the Cascade Range in southern Oregon was deposited in Upper Klamath Lake. Quantitative interpretation of magnetic properties and grain-size data of cored sediments from Caledonia Marsh on the west side of the lake provides a continuous record of the flux of glacial flour spanning the last 37 000 calendar years. For modeling purposes, the lake sediments from the 13-m core were divided into three sedimentary components defined from magnetic, geochemical, petrographic, and grain-size data. The components are (1) strongly magnetic, glacial flour made up of extremely fine-grained, fresh volcanic rock particles, (2) less magnetic lithic material made up of coarser, weathered volcanic detritus, and (3) non-magnetic biogenic material (largely biogenic silica). Quantitative interpretation is possible because there has been no significant postdepositional destruction or formation of magnetic minerals, nor alteration affecting grain-size distributions. Major steps involved in the interpretation include: (1) computation of biogenic and lithic components; (2) determination of magnetic properties and grain-size distributions of the non-glacial and glacial flour end-members; (3) computation of the contents of weathered and glacial flour components for each sample; (4) development of an age model based on the mass accumulation of the non-glacial lithic component; and (5) use of the age model and glacial flour contents to compute the flux of glacial flour. Comparison of the glacial flour record from Upper Klamath Lake to mapped glacial features suggests a nearly linear relation between flux of glacial flour and the extent of nearby glaciers. At 22 ka, following an extended period during which glaciers of limited size waxed and waned, late Wisconsin (Waban) glaciers began to grow, reaching their maximum extent at 19 ka. Glaciers remained near their maximum extent for 1000 years. During this period, lake sediments were made up of 80% glacial flour. The content of glacial flour decreased as the glaciers receded, and reached undetectable levels by 14 ka.  相似文献   
342.
Analysis of climatic and topographic evidence from the Cascade Range of Washington State indicates that glacial erosion limits the height and controls the morphology of this range. Glacial erosion linked to long-term spatial gradients in the ELA created a tilted, planar zone of 373 cirques across the central part of the range; peaks and ridges now rise ≤600 m above this zone. Hypsometric analysis of the region shows that the proportion of land area above the cirques drops sharply, and mean slopes >30° indicate that the areas above the cirques may be at or near threshold steepness. The mean plus 1σ relief of individual cirque basins (570 m) corresponds to the ∼600-m envelope above which peaks rarely rise. The summit altitudes are set by a combination of higher rates of glacial and paraglacial erosion above the ELA and enhanced hillslope processes due to the creation of steep topography. On the high-precipitation western flank of the Cascades, the dominance of glacial and hillslope erosion at altitudes at and above the ELA may explain the lack of a correspondence between stream-power erosion models and measured exhumation rates from apatite (U-Th/He) thermochronometry.  相似文献   
343.
We present a new GPS-derived 3D velocity field for the Fennoscandia glacial isostatic adjustment (GIA) area. This new solution is based upon ∼3,000 days of continuous GPS observations obtained from the permanent networks in Fennoscandia. The period encompasses a prolongated phase of stable observation conditions after the northern autumn of 1996. Several significant improvements have led to smaller uncertainties and lower systematic errors in the new solutions compared to our previous results. The GPS satellite elevation cut-off angle was lowered to 10°, we fixed ambiguities to integers where possible, and only a few hardware changes occurred over the entire network. The GAMIT/GLOBK software package was used for the GPS analysis and reference frame realization. Our new results confirmed earlier findings of maximum discrepancies between GIA models and observations in northern Finland. The reason may be related to overestimated ice-sheet thickness and glaciation period in the north. In general, the new solutions are more coherent in the velocity field, as some of the perturbations are now avoided. We compared GPS-derived GIA rates with sea-level rates from tide-gauge observations, repeated precise leveling, and with GIA model computations, which showed consistency.  相似文献   
344.
Soil structure is considered to be a systematic homogeneously repetitive heterogeneity of properties and conditions of soil. For upscaling and homogenisation of properties and conditions it is necessary to understand the ways in which soil structures occur, and to obtain understanding of the ways in which it influences soil behaviour. Using three case studies, different aspects of the effects of soil structure in soil mechanics are discussed. The very loose grain scale packing of loess deposits, held together by weak structural bonds between particles, results in dramatic propagating failure when the strength of the bonds is exceeded by deformations, as illustrated in the first case. Nonhorizontal stresses induced in the subsurface below moving continental ice sheets result in rotated stress fields within the affected soil. The rotated stress field is stored in the structure of the soil, as is shown in the second case, and influences present day properties and behaviour of these clays. It is shown in the third case that there is a large difference in the behaviour of clayey sand depending on whether the clay occurs in the form of the common clay flasers or whether the clay is homogeneously dispersed in the sand. The deformation and stress propagation in the case of sand with clay flasers results in local failures and shear planes due to the large contrast in the properties of the materials making up the sedimentary structure. The result is that many of the properties of sand with flasers are rather more like the clay of the flasers than the sand. Incorporation in the engineering practice of effects of common types of soil structure is made possible with the widespread availability of techniques such as numerical modelling. These techniques enable the development of appropriate tools for practical application.  相似文献   
345.
About 115,000 yr ago the last interglacial reached its terminus and nucleation of new ice-sheet growth was initiated. Evidence from the northernmost Nordic Seas indicate that the inception of the last glacial was related to an intensification of the Atlantic Meridional Overturning Circulation (AMOC) in its northern limb. The enhanced AMOC, combined with minimum Northern hemisphere insolation, introduced a strong sea-land thermal gradient that, together with a strong wintertime latitudinal insolation gradient, increased the storminess and moisture transport to the high Northern European latitudes at a time when the Northern hemisphere summer insolation approached its minimum.  相似文献   
346.
Glacial geomorphology around the Northern Patagonian Icefield indicates that a number of fast-flowing outlet glaciers (the continuation of ice streams further upglacier) drained the icefield during the Last Glacial Maximum. These topographically controlled fast-flowing glaciers may have dictated the overall pattern of Last Glacial Maximum ice discharge, lowered the ice-surface profile, and forced the ice-divide westward. The influence of the fast-flowing outlet glaciers on icefield behavior also helps to explain why the configuration of the Patagonian Icefield at the Last Glacial Maximum is not accurately represented in existing numerical ice-sheet models. Fast-flowing outlet glaciers would have strongly influenced ice discharge patterns and therefore partially decoupled the icefield from climatically induced changes in thickness and extent.  相似文献   
347.
Little is known about the response of terrestrial East Antarctica to climate changes during the last glacial-interglacial cycle. Here we present a continuous sediment record from a lake in the Larsemann Hills, situated on a peninsula believed to have been ice-free for at least 40,000 yr. A mutli-proxy data set including geochronology, diatoms, pigments and carbonate stable isotopes indicates warmer and wetter conditions than present in the early part of the record. We interpret this as Marine Isotope Stage 5e after application of a chronological age-depth model and similar ice core evidence. Dry and cold conditions are inferred during the last glacial, with lake-level minima, floristic changes towards a shallow water algal community, and a greater biological receipt of ultraviolet radiation. During the Last Glacial Maximum and Termination I the lake was perennially ice-covered, with minimal snowmelt in the catchment. After ca. 10,500 cal yr B.P., the lake became seasonally moated or ice-free during summer. Despite a low accumulation rate, the sediments document some Holocene environmental changes including neoglacial cooling after ca. 2450 cal yr B.P., and a gradual increase in aridity and salinity to the present.  相似文献   
348.
The major climatic variations that have affected the summit slopes of the higher Apennine massifs in the last 6000 yr are shown in alternating layers of organic matter-rich soils and alluvial, glacial and periglacial sediments. The burial of the soils, triggered by environmental-climatic variations, took place in several phases. For the last 3000 yr chronological correlations can be drawn between phases of glacial advance, scree and alluvial sedimentation and development of periglacial features. During some periods, the slopes were covered by vegetation up to 2700 m and beyond, while in other phases the same slopes were subject to glacial advances and periglacial processes, and alluvial sediments were deposited on the high plateaus. Around 5740-5590, 1560-1370 and 1300-970 cal yr B.P., organic matter-rich soils formed on slopes currently subject to periglacial and glacial processes; the mean annual temperature must therefore have been higher than at present. Furthermore, on the basis of the variations in the elevation of the lower limit reached by gelifraction, it can be concluded that the oscillations in the minimum winter temperatures could have ranged between 3.0°C lower (ca. 790-150 cal yr B.P.) and 1.2°C higher (ca. 5740-5590 cal yr B.P.) than present minimum winter temperatures. During the last 3000 yr the cold phases recorded by the Calderone Glacier advance in the Apennines essentially match basically the phases of glacial advance in the Alps.  相似文献   
349.
The numerical simulation experiment of climate at Last Glacial Maximum (LGM.21 ka BP) in China is made by using an atmospheric general circulation model (AGCM) coupled with land surface processes (AGCM+SSiB) and earth orbital parameters and boundary forcing conditions at21 ka.The modeled climate features are compared with reconstructed conditions at 21 ka from paleo-lake data and pollen data.The results show that the simulated climate conditions at 21 ka in China are fairly comparable with paleo-climatological data.The climate features at 21 ka in China from the experiment are characterized by a drier in the east and a wetter in the west and in the Tibetan Plateau as well.According to the analysis of distribution of pressure and precipitation,as well as the intensity of atmospheric circulation at 21 ka,monsoon circulation in eastern Asia was significantly weak comparing with the present.In the Tibetan Plateau,the intensity of summer monsoon circulation was strengthened,and winter monsoon was a little stronger than the present.The simulation with given forcing boundary conditions,especially the different vegetation coverage,can reproduce the climate condition at the LGM in China,and therefore provides dynamical mechanisms on the climate changes at 21 ka.  相似文献   
350.
来自东亚夏季风北界内蒙古一个盐湖的岩心沉积物内发现粗粒沉积物 ,既可沉积在湖泊收缩期 ,也可以沉积在沙丘再次活动时期。这些沉积物有机磷含量低而碎屑组分高 ,说明它沉积在一种干旱的环境中 ;反之 ,有机质含量高而碎屑组分低的细粒沉积物则最终沉积在高湖面期 ,这是因为砂坪呈围迁状态及风成尘埃较好地保存于水体中。所揭示的三个湿期分别是 13.4~ 8kaBP、6 .4~ 5 .8kaBP和4.2~ 3.1kaBP ,第一期最湿 ,其次是第三期、第二期。上述干和湿期自始至终和早先发现的同一个干旱和半干旱转换带一致 ,但是 ,这和中国大陆东部、台湾岛、冲绳海槽和中国南海所揭示的湿润的全新世大暖期不一样 ,而且 ,全新世最冷期 (4~ 2kaBP)则对应内蒙古的一个湿期 (即 4.2~ 3.1kaBP) ,这些差别可能是由于高蒸发量远远地超过了较高的季风降水量 ,这是确定夏季风北界在该地区有效湿度的一个关键标志。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号