首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8942篇
  免费   1615篇
  国内免费   3095篇
测绘学   311篇
大气科学   577篇
地球物理   2304篇
地质学   7021篇
海洋学   481篇
天文学   20篇
综合类   465篇
自然地理   2473篇
  2024年   37篇
  2023年   100篇
  2022年   327篇
  2021年   415篇
  2020年   472篇
  2019年   536篇
  2018年   484篇
  2017年   369篇
  2016年   477篇
  2015年   513篇
  2014年   664篇
  2013年   733篇
  2012年   611篇
  2011年   713篇
  2010年   625篇
  2009年   683篇
  2008年   676篇
  2007年   680篇
  2006年   774篇
  2005年   563篇
  2004年   523篇
  2003年   444篇
  2002年   423篇
  2001年   325篇
  2000年   275篇
  1999年   216篇
  1998年   196篇
  1997年   169篇
  1996年   160篇
  1995年   83篇
  1994年   74篇
  1993年   64篇
  1992年   62篇
  1991年   43篇
  1990年   33篇
  1989年   27篇
  1988年   24篇
  1987年   12篇
  1986年   10篇
  1985年   8篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1978年   6篇
  1977年   1篇
  1976年   1篇
  1973年   2篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
In this paper, the internal structure of shear band is investigated, and a model of the shear band with an echelon crack structure is developed. The model assumes the shear band to be composed of two conjugate sets of echelon cracks, such that the smaller echelon cracks are embedded in the space of the larger ones. The additional strain induced by the echelon cracks and the anisotropic development of the compliance tensor in the shear band zone are analyzed. The critical crack density at the onset of shear band is obtained by applying the bifurcation condition. Deviating from previous approaches, the new procedure evaluates the thickness of shear band based on the geometrical characteristics of echelon crack arrays and the failure probability of grain boundaries in the longitudinal direction at the onset of shear band. Parametric analysis shows that grain size, internal friction angle, dilation angle, and failure probability of grain boundaries are the dominant factors that account for the shear band thickness. The calculated results are consistent with the experimental data available in the literature. The model soundly explains that the measurements of the shear band thickness are generally scattered, ranging from 4 to 30 (or even more) times the grain size. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
992.
An investigation on environmental background values was made in an area of about 1,140,000 km2, which included temperate and subtropical zones of China. The environmental background values of 142 soil environment units, 18 main soil types, 87 surface water environment units, 8 aquatic organism environment units and 20 underground water environment units were obtained. The rules, causes and effecting factors of regional differentiation of the environmental background values were deduced from over 200,000 various data.  相似文献   
993.
Soil surface crusts are widely reported to favour Hortonian runoff, but are not explicitly represented in most rainfall‐runoff models. The aim of this paper is to assess the impact of soil surface crusts on infiltration and runoff modelling at two spatial scales, i.e. the local scale and the plot scale. At the local scale, two separate single ring infiltration experiments are undertaken. The first is performed on the undisturbed soil, whereas the second is done after removal of the soil surface crust. The HYDRUS 2D two‐dimensional vertical infiltration model is then used in an inverse modelling approach, first to estimate the soil hydraulic properties of the crust and the subsoil, and then the effective hydraulic properties of the soil represented as a single uniform layer. The results show that the crust hydraulic conductivity is 10 times lower than that of the subsoil, thus illustrating the limiting role the crust has on infiltration. Moving up to the plot scale, a rainfall‐runoff model coupling the Richards equation to a transfer function is used to simulate Hortonian overland flow hydrographs. The previously calculated hydraulic properties are used, and a comparison is undertaken between a single‐layer and a double‐layer representation of the crusted soil. The results of the rainfall‐runoff model show that the soil hydraulic properties calculated at the local scale give acceptable results when used to model runoff at the plot scale directly, without any numerical calibration. Also, at the plot scale, no clear improvement of the results can be seen when using a double‐layer representation of the soil in comparison with a single homogeneous layer. This is due to the hydrological characteristics of Hortonian runoff, which is triggered by a rainfall intensity exceeding the saturated hydraulic conductivity of the soil surface. Consequently, the rainfall‐runoff model is more sensitive to rainfall than to the subsoil's hydrodynamic properties. Therefore, the use of a double‐layer soil model to represent runoff on a crusted soil does not seem necessary, as the increase of precision in the soil discretization is not justified by a better performance of the model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
994.
A theory of pressure sensor response in snow is derived and used to examine the sources of measurement errors in snow water equivalent (SWE) pressure sensors. Measurement errors in SWE are caused by differences in the compressibility of the pressure sensor and the adjacent snow layer, which produces a shear stress along the perimeter of the sensor. When the temperature at the base of the snow cover equals 0 °C, differences in the snowmelt rate between the snow–SWE sensor interface and the adjacent snow–soil interface may also produce a shear stress along the sensor's perimeter. This shear stress perturbs the pressure field over the sensor, producing SWE measurement errors. Snow creep acts to reduce shear stresses along the SWE sensor's perimeter at a rate that is inversely proportional to the snow viscosity. For sustained periods of differential snowmelt, a difference in the mass of snow over the sensor compared with the surrounding soil will develop, producing additional permanent errors in SWE measurements. The theory indicates that SWE pressure sensor performance can be improved by designing a sensor with a high Young's modulus (low compressibility), low aspect ratio, large diameter and thermal properties that match those of the surrounding soil. Simulations of SWE pressure sensor errors using the theory are in close agreement with observed errors and may provide a means to correct historical SWE measurements for use in hydrological hindcast or climate studies. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   
995.
The influence of a hedge surrounding bottomland on soil‐water movement along the hillslope was studied on a plot scale for 28 months. The study was based on the comparison of two transects, one with a hedge, the other without, using mainly a dense grid of tensiometers. The influence of the bottomland hedge was located in the area where tree roots were developed, several metres upslope from the hedge, and could be observed both in the saturated and non‐saturated zone, from May to December. The hedge induced a high rate of soil drying, because of the high evaporative capacity of the trees. We evaluated that water uptake by the hedge during the growing season was at least 100 mm higher than without a hedge. This increased drying rate led to a delayed rewetting of the soils upslope from the hedge in autumn, of about 1 month compared with the situation without a hedge. Several consequences of this delayed rewetting are expected: a delay in the return of subsurface transfer from the hillslope to the riparian zone, a buffering effect of hedges on floods, already observed at the catchment scale, and an increased residence time of pollutants. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
996.
THE CORRESPONDING ANALYSIS OF HEAVY-METAL POLLUTION OF SOIL IN ZHUZHOU CITY   总被引:1,自引:0,他引:1  
THE CORRESPONDING ANALYSIS OF HEAVY-METAL POLLUTION OF SOIL IN ZHUZHOU CITY ShangJincheng(尚金城);LongAimin(龙爱民)LiBin(李斌);JiangJ...  相似文献   
997.
The natural heterogeneity of water and solute movement in hillslope soils makes it difficult to accurately characterize the transport of surface‐applied pollutants without first gathering spatially distributed hydrological data. This study examined the application of time‐domain reflectometry (TDR) to measure solute transport in hillslopes. Three different plot designs were used to examine the transport of a conservative tracer in the first 50 cm of a moderately sloping soil. In the first plot, which was designed to examine spatial variability in vertical transport in a 1·2 m2 plot, a single probe per meter was found to adequately characterize vertical solute travel times. In addition, a dye and excavation study in this plot revealed lateral preferential flow in small macropores and a transport pattern where solute is focused vertically into preferential flow pathways. The bypass flow delivers solute deeper in the soil, where lateral flow occurs. The second plot, designed to capture both vertical and lateral flow, provided additional evidence confirming the flow patterns identified in the excavation of the first plot. The third plot was designed to examine lateral flow and once again preferential flow of the tracer was observed. In one instance rapid solute transport in this plot was estimated to occur in as little as 3% of the available pore space. Finally, it was demonstrated that the soil anisotropy, although partially responsible for lateral subsurface transport, may also homogenize the transport response across the hillslope by decreasing vertical solute spreading. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
998.
均质土坡潜在滑面的确定 ,是对均质土坡进行稳定性计算的必要前提。传统的以瑞典圆弧法为代表的刚体极限平衡方法 ,虽然能够确定出均质土坡的滑面 ,但工作量较大 ,使用不方便。因此 ,在塑性极限分析方法的基础上 ,提出了一种新的搜索滑面的方法  相似文献   
999.
This paper uses a variety of multivariate statistical techniques in order to improve current understanding of the antecedent and rainfall controls on drainage characteristics for an agricultural underdrained clay site. Using the dataset obtained from a two‐year hillslope study at Wytham (Oxfordshire, UK) a number of patterns in the nature and style of drainage events were explored. First, using principal components analysis, a distinction was drawn between drainflow controlled by antecedent conditions and drainflow controlled by rainfall characteristics. Dimensional analysis then distinguished between two further types of drainflow event: antecedent limited events (ALE) and non‐antecedent limited events (NALE). These were drainflow events requiring a minimum antecedent hydraulic head to occur (ALE) and events that occurred in response to rainfall irrespective of the antecedent conditions, because the rainfall was either of high enough intensity or duration to prompt a response in drainflow (NALE). 2. The dataset also made possible a preliminary investigation into the controls on and types of macropore flow at the site. Principal components analysis identified that rainfall characteristics were more important than antecedent conditions in generating high proportions of macropore flow in drainflow. Of the rainfall characteristics studied, rainfall amount and intensity were the dominant controls on the amount of macropore flow, with duration as a secondary control. Two styles of macropore flow were identified: intensity‐driven and duration‐driven. Intensity‐driven events are characterized by rainfall of high intensity and short duration. During such events the amount of macropore flow is proportional to the rainfall intensity and the interaction between macropore and matrix flow is kinetically limited. The second style of macropore flow is characterized by long‐duration events. For these events the amount of macropore flow approaches a maximum value whatever the rainfall duration. This suggests that these events are characterized by an equilibrium interaction between macropores and matrix flow. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
1000.
Grazing is common in the foothills fescue grasslands and may influence the seasonal soil‐water patterns, which in turn determine range productivity. Hydrological modelling using the soil and water assessment tool (SWAT) is becoming widely adopted throughout North America especially for simulation of stream flow and runoff in small and large basins. Although applications of the SWAT model have been wide, little attention has been paid to the model's ability to simulate soil‐water patterns in small watersheds. Thus a daily profile of soil water was simulated with SWAT using data collected from the Stavely Range Sub‐station in the foothills of south‐western Alberta, Canada. Three small watersheds were established using a combination of natural and artificial barriers in 1996–97. The watersheds were subjected to no grazing (control), heavy grazing (2·4 animal unit months (AUM) per hectare) or very heavy grazing (4·8 AUM ha?1). Soil‐water measurements were conducted at four slope positions within each watershed (upper, middle, lower and 5 m close to the collector drain), every 2 weeks annually from 1998 to 2000 using a downhole CPN 503 neutron moisture meter. Calibration of the model was conducted using 1998 soil‐water data and resulted in Nash–Sutcliffe coefficient (EF or R2) and regression coefficient of determination (r2) values of 0·77 and 0·85, respectively. Model graphical and statistical evaluation was conducted using the soil‐water data collected in 1999 and 2000. During the evaluation period, soil water was simulated reasonably with an overall EF of 0·70, r2 of 0·72 and a root mean square error (RMSE) of 18·01. The model had a general tendency to overpredict soil water under relatively dry soil conditions, but to underpredict soil water under wet conditions. Sensitivity analysis indicated that absolute relative sensitivity indices of input parameters in soil‐water simulation were in the following order; available water capacity > bulk density > runoff curve number > fraction of field capacity (FFCB) > saturated hydraulic conductivity. Thus these data were critical inputs to ensure reasonable simulation of soil‐water patterns. Overall, the model performed satisfactorily in simulating soil‐water patterns in all three watersheds with a daily time‐step and indicates a great potential for monitoring soil‐water resources in small watersheds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号