首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   181篇
  国内免费   7篇
测绘学   3篇
大气科学   1篇
地球物理   426篇
地质学   27篇
海洋学   6篇
天文学   47篇
综合类   3篇
自然地理   9篇
  2022年   5篇
  2021年   6篇
  2020年   9篇
  2019年   11篇
  2018年   13篇
  2017年   10篇
  2016年   9篇
  2015年   14篇
  2014年   21篇
  2013年   21篇
  2012年   13篇
  2011年   18篇
  2010年   22篇
  2009年   30篇
  2008年   21篇
  2007年   18篇
  2006年   19篇
  2005年   21篇
  2004年   21篇
  2003年   26篇
  2002年   20篇
  2001年   17篇
  2000年   14篇
  1999年   23篇
  1998年   16篇
  1997年   12篇
  1996年   12篇
  1995年   21篇
  1994年   9篇
  1993年   5篇
  1992年   17篇
  1991年   6篇
  1990年   3篇
  1989年   7篇
  1988年   5篇
  1987年   3篇
  1981年   1篇
  1980年   1篇
  1954年   2篇
排序方式: 共有522条查询结果,搜索用时 15 毫秒
41.
Hilbert-Huang Transform (HHT) is a novel data analysis technique for nonlinear and non-stationary data. We present a time-frequency analysis of both simulated light curves and an X-ray burst from the X-ray burster 4U 1702-429 with both the HHT and the Windowed Fast Fourier Transform (WFFT) methods. Our results show that the HHT method has failed in all cases for light curves with Poissonian fluctuations which are typical for all photon counting instruments used in astronomy, whereas the WFFT method can sensitively detect the periodic signals in the presence of Poissonian fluctuations; the only drawback of the WFFT method is that it cannot detect sharp frequency variations accurately.  相似文献   
42.
冕洞的研究在近二十多年里取得了丰硕的成果。本文回顾了冕洞的发现及观测历史,系统阐述了冕洞的结构特征、形成及演化规律,讨论了冕洞对日地空间产生的影响,冕洞与超级活动区的关系以及冕洞在太阳活动预报中所起的作用,在此基础上利用1970—1995年的冕洞资料对冕洞的时空分布和磁极性演化规律与太阳活动周的关系,以及冕洞与太阳风速度、地磁扰动等方面进行分析研究,得出以下结论:(1)冕洞在南北半球的分布在形态上基本是对称的,但在冕洞数量上北半球稍占优势;(2)冕洞的盛衰演化呈周期性,表现为赤道冕洞周期与黑子周期是完全一致的,极冕洞周期与黑子周期相位相差180°;(3)赤道冕洞的纬度分布随太阳活动周上升而上升,当太阳活动周达到极大值时,它也达到极大,然后再随太阳活动周下降而下降,极冕洞的纬度延伸方向演化与赤道冕洞相反;(4)极冕洞的极场呈11年周期性,并且极场反转出现在太阳活动峰年期间;(5)太阳风和地磁扰动与冕洞的演化有着密切的关系  相似文献   
43.
本文分析了2012年唐山4.8级地震前,震中附近出现的短期原地重现线状集中分布地磁日变化感应电流异常的时空变化特征,及其与地震、中-下地壳和上地幔高导层的关系,进一步证实了短期原地重现线状集中分布感应电流的走向与中-下地壳和上地幔高导层顶面界埋深走向一致,认为其机理可能是深部热流体的上涌导致壳幔高阻体出现带有上拱性质的拆离滑动,深部上涌的热流体和高导层内热流体侵入高导层内电阻相对较高的地区,高导层出现短时间高导电流通道,当地磁日变化感应电流扫描经过高导电流通道时,感应电流会呈线状集中分布于此,并基于趋肤效应分布于其顶面附近。由于重现异常是发生在震源下方中-下地壳和上地幔高导层的地震异常,且该异常不同于震源附近及其震源至地表的地震异常,因此对推进地震孕育与发生机理研究可能有一定作用。此外研究还发现,地震虽然主要位于重叠段的端部,但更有可能位于中-下地壳重叠段的端部,这一发现对日常震情跟踪中应用该异常确定未来地震位置有一定帮助。  相似文献   
44.
Geoeffective Analysis of CMEs Under Current Sheet Magnetic Coordinates   总被引:1,自引:0,他引:1  
Using 100 CME–ICME events during 1997.01–2002.11, based on the eruptive source locations of CMEs and solar magnetic field observations at the photosphere, a current sheet magnetic coordinate (CMC) system is established in order to statistically study the characteristics of the CME–ICME events and the corresponding geomagnetic storm intensity. The transit times of CMEs from the Sun to the Earth are also investigated, by taking into account of the angle between the CME eruption normal (defined as the vector from the Sun center to the CME eruption source) and the Sun-Earth line. Our preliminary conclusions are: 1. The distribution of the CME sources in our CMC system is obviously different from that in the ordinary heliographic coordinate system. The sources of CMEs are mainly centralized near the heliospheric current sheet (HCS), and the number of events decreases with the increment of the angular distance from the CME source to the HCS on the solar surface; 2. A large portion of the total events belong to the same–side events (referring to the CME source located on the same side of the HCS as the Earth), while only a small portion belong to the opposite–side events (the CME source located on the opposite side of the HCS as the Earth). 3. The intense geomagnetic storms are usually induced by the same–side events, while the opposite side events are commonly associated with relatively weak geomagnetic storms; 4. The angle between the CME normal and the Sun–Earth line is used to estimate the transit time of the CME in order to reflect the influence of propagation characteristic of the CME along the Sun–Earth direction. With our new prediction method in context of the CMC coordinate, the averaged absolute error for these 100 events is 10.33 hours and the resulting relative error is not larger than 30% for 91% of all the events.  相似文献   
45.
Photometric observations of symbiotic stars in the blue and in the red spectral regions make it possible to reveal non-radial oscillations both of the cool and of the hot components. Light variations of red giants in the symbiotic systems CI Cyg and AG Peg show several periods in the 10–80d range, interpreted as p-mode pulsations. These modes are excited by a bright spot produced by radiation flux from the hot component. The spot moves on the red giant’s photosphere at a velocity close to the sound speed. During the active phase of the symbiotic star CH Cyg, at least 25 frequencies of oscillations in the 150–6000 s range of periods were found in the light of the white dwarf. Their features correspond to non-radial g-modes. In the frame of 2D gas dynamical non-adiabatic models, the interaction between gas flows and the accretion disk leads to formation of a system of shock waves propagating towards the compact object, which is one of possible mechanisms to excite non-radial pulsations of white dwarfs in symbiotic systems.  相似文献   
46.
Current models and observations of variability in HgMn stars disagree.We present here the models that argue for pulsating HgMn stars with properties similar to those of SlowlyPulsating B Stars. The lack of observed variable HgMn stars suggeststhat some physical process is missing from the models. Somepossibilities are discussed.  相似文献   
47.
In this paper, we analyze the interplanetary causes of eight great geomagnetic storms during the solar maximum (2000-2001). The result shows that the interplanetary causes were the intense southward magnetic field and the notable characteristic among the causal mechanism is compression. Six of eight great geomagnetic storms were associated with the compression of southward magnetic field, which can be classified into (1) the compression between ICMEs (2) the compression between ICMEs and interplanetary medium. It suggests that the compressed magnetic field would be more geoeffective. At the same time, we also find that half of all great storms were related to successive halo CMEs, most of which originated from the same active region. The interactions between successive halo CMEs usually can lead to greater geoeffectiveness by enhancing their southward field Bs interval either in the sheath region of the ejecta or within magnetic clouds (MCs). The types of them included: the compression between the fast speed transient flow and the slow speed background flow, the multiple MCs, besides shock compression. Further, the linear fit of the Dst versus gives the weights of and Δt as α=2.51 and β=0.75, respectively. This may suggest that the compression mechanism, with associated intense Bs, rather than duration, is the main factor in causing a great geomagnetic storm.  相似文献   
48.
We have performed hydrodynamic calculations of the radial pulsations of helium stars with masses 10MM ≤ 50M, luminosity-to-mass ratios 5 × 103L/ML/M ≤ 2.5 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for helium and heavy-element mass fractions of Y=0.98 and Z=0.02, respectively. We show that the high-temperature boundary of the instability region for radial pulsations at L/M ? 104L/M extends to Teff≈105 K. The amplitude of the velocity variations for outer layers is several hundred km s?1, while the brightness variations in the B band of the UBV photometric system are within the range from several hundredths to half a magnitude. At constant luminosity-to-mass ratio, the radial pulsation period is determined only by the effective temperature of the star. In the ranges of luminosity-to-mass ratios 104L/ML/M ≤ 2 × 104L/M and effective temperatures 5 × 104 K ≤ Teff ≤ 9 × 104 K, the periods of the radial modes are within 6 min ?Π?103 min.  相似文献   
49.
For at least 30 years now it has been well known that the Dst index can be modelled using the solar wind as input. Since then, many attempts have been made to improve the predictability of Dst using different approaches. These attempts are useful, for instance, to understand which features of the solar wind–magnetosphere interactions are most important in producing magnetospheric activity and how the Dst index would improve the space weather forecast. The Dst index is by far the most reliable and simple indication that a magnetic storm is in progress. In this work, the effect of using more than four magnetic stations and shorter time intervals than the hourly averages used in Sugiura's procedures is evaluated. The discussion is based on the results presented by Burton in 1975 and Feldstein in 1984 considering 4 or 12 magnetic stations and time averages of 2.5 min for a magnetic disturbed period that occurred from February 7–28, 1967, including two geomagnetic storms. The analysis has shown that the global representation of a magnetic storm by the standard Dst (Sugiura) is well preserved either using 4, 6, 12 magnetic stations or using 1 h, 2.5 min 1 min averages. A brief review of the current understanding of Dst has been included to support the discussions. The analysis performed has shown that a more refined Dst index (time and number of stations>4) would be useful to investigate the intrinsic processes and the different current systems involved in the ring current development during magnetic storms; the standard Dst, as it is conceived, is quite adequate to monitor geomagnetic storms and identify their overall features; concerning the magnetic stations normally considered, the inclusion of higher magnetic latitude stations (>35) may underestimate the observed Dst.  相似文献   
50.
We have obtained 40 high-resolution circular spectropolarimetric measurements of 12 slowly pulsating B (SPB) stars, eight β Cephei stars and two Be stars with the Echelle Spectropolarimetric Device for the Observation of Stars at CFHT (ESPaDOnS) and Narval spectropolarimeters. The aim of these observations is to evaluate recent claims of a high incidence of magnetic field detections in stars of these types obtained using low-resolution spectropolarimetry by Hubrig et al. The precision achieved is generally comparable to or superior to that obtained by Hubrig et al., although our new observations are distinguished by their resolution of metallic and He line profiles, and their consequent sensitivity to magnetic fields of zero net longitudinal component. In the SPB stars, we confirm the detection of magnetic field in one star (16 Peg), but find no evidence of the presence of fields in the remaining 11. In the β Cep stars, we detect a field in  ξ1  CMa, but not in any of the remaining seven stars. Finally, neither of the two B-type emission-line stars shows any evidence of magnetic field. Based on our results, we conclude that fields are not common in SPB, β Cep and B-type emission-line stars, consistent with the general rarity of fields in the broader population of main sequence B-type stars. A relatively small, systematic underestimation of the error bars associated with the UV Focal Reducer and Low Dispersion Spectrograph for the Very Large Telescope (FORS1) longitudinal field measurements of Hubrig et al. could in large part explain the discrepancy between their results and those presented here.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号