首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   697篇
  免费   120篇
  国内免费   245篇
测绘学   8篇
大气科学   19篇
地球物理   189篇
地质学   716篇
海洋学   75篇
天文学   1篇
综合类   27篇
自然地理   27篇
  2024年   7篇
  2023年   10篇
  2022年   9篇
  2021年   26篇
  2020年   39篇
  2019年   45篇
  2018年   32篇
  2017年   48篇
  2016年   48篇
  2015年   25篇
  2014年   45篇
  2013年   55篇
  2012年   33篇
  2011年   45篇
  2010年   41篇
  2009年   56篇
  2008年   42篇
  2007年   34篇
  2006年   51篇
  2005年   29篇
  2004年   32篇
  2003年   24篇
  2002年   30篇
  2001年   29篇
  2000年   31篇
  1999年   33篇
  1998年   20篇
  1997年   22篇
  1996年   17篇
  1995年   16篇
  1994年   19篇
  1993年   15篇
  1992年   16篇
  1991年   11篇
  1990年   7篇
  1989年   8篇
  1988年   1篇
  1987年   1篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有1062条查询结果,搜索用时 15 毫秒
11.
The mixing agents and their role in the dynamics of a shallow fjord are elucidated through an Eulerian implementation of artificial tracers in a three-dimensional hydrodynamic model. The time scales of vertical mixing in this shallow estuary are short, and the artificial tracers are utilized in order to reveal information not detectable in the temperature or salinity fields. The fjord's response to external forcing is investigated through a series of model experiments in which we quantify vertical mixing, transport time scales of fresh water runoff and estuarine circulation in relation to external forcing.Using age tracers released at surface and bottom, we quantify the time scales of downward mixing of surface water and upward mixing of bottom water. Wind is shown to be the major agent for vertical mixing at nearly all depth levels in the fjord, whereas the tide or external sea level forcing is a minor agent and only occasionally more important just close to the bottom. The time scale of vertical mixing of surface water to the bottom or ventilation time scale of bottom water is estimated to be in the range 0.7 h to 9.0 days, with an average age of 2.7 days for the year 2004.The fjord receives fresh water from two streams entering the innermost part of the fjord, and the distribution and age of this water are studied using both ageing and conservative tracers. The salinity variations outside this fjord are large, and in contrast to the salinity, the artificial tracers provide a straight forward analysis of river water content. The ageing tracer is used to estimate transport time scales of river water (i.e. the time elapsed since the water left the river mouth). In May 2004, the typical age of river water leaving the fjord mouth is 5 days. As the major vertical mixing agent is wind, it controls the estuarine circulation and export of river water. When the wind stress is set to zero, the vertical mixing is reduced and the vertical salinity stratification is increased, and the river water can be effectively exported out of the fjord.We also analyse the river tracer fields and salinity field in relation to along estuary winds in order to detect signs of wind-induced straining of the along estuary density gradient. We find that events of down estuary winds are primarily associated with a reduced along estuary salinity gradient due to increased surface salinity in the innermost part of the fjord, and with an overall decrease in vertical stratification and river water content at the surface. Thus, our results show no apparent signs of wind-induced straining in this shallow fjord but instead they indicate increased levels of vertical mixing or upwelling during down estuary wind events.  相似文献   
12.
本文对套子湾表层沉积物中的pH、Eh、硫化物、氮、磷、有机质、铜、铅、锌、镉地球化学特征进行了分析研究.并讨论了如下几个关系:①与沉积类型之间的关系;②其相关性与环境的关系。③与矿物的关系;④与水和风等作用的关系;⑤与水化学的关系;⑥重点分析了表层沉积物中化学要素与生物的相互关系。这不仅为该湾的开发治理.生物养殖等提供科学依据.并进一步证明沉积物地球化学.在环境化学和生态学研究等方面的理论意义。  相似文献   
13.
Samples of O isotopic tracer were mlleMed at Sections P3,P25,PcM-t/2-E and PCM-1/2.w in both the Fast China Sea and the area to the east of the Ryūkyū-gunto during October-November,1991.Analytical results of the δ18O are as follows: (1) In the Kuroshio area,the δ18O isolines are almost parallel to the 200 m isobath.The value of δ18O is negative and reaches minimum mt the main axis of the Kuroshio,and increases on both sides.(2) In the Taiwan Warm Current (TWC) area there is a high δ18O tongue extending to the northeast.(3) In the area near the coast,the distribution of δ18O isoline shows that the Changjiang River runoff diffuses seaward and the land-ocean isotopic effect from the nearshore to the offshore.(4) The values of δ18O are from -1.0×10-3 to -0.5×10-3 in the shelf.(5) There is a low mre of δ18O value(<-1.6×10-3) at the 600 m layer in the Kuroshio area,which is quite in accord with the existence of a low salinity mre (S G 34.30) between the 600 and 800 m layers in the same area.Finally,the mrrelations of the δ18O with the salinity and temperature,the upwelling and so on are discussed.  相似文献   
14.
The Kazhdumi Formation of the Bangestan Group is a well-known source rock that has produced abundant oil in most petroleum fields in the Zagros Basin, which stretches from northwest to southwest Iran over hundreds of kilometres. The formation reaches a thickness of 230 m at the type section in northwest Zagros but thins out to 40–50 m in wells studied from the South Pars giant petroleum field, where it comprises mainly grey shales with occasional intercalations of marls and sandstones. South Pars, best known as the Iranian part of the world's largest non-associated gas field, contains small quantities of oil above and below the Kazhdumi Formation.  相似文献   
15.
The elevated levels of primary productivity associated with eastern boundary currents are driven by nutrient- rich waters upwelled from depth, such that these regions are typically characterised by high rates of nitrate-fuelled phytoplankton growth. Production studies from the southern Benguela upwelling system (SBUS) tend to be biased towards the summer upwelling season, yet winter data are required to compute annual budgets and understand seasonal variability. Net primary production (NPP) and nitrate and ammonium uptake were measured concurrently at six stations in the SBUS in early winter. While euphotic zone NPP was highest at the stations nearest to the coast and declined with distance from the shore, a greater proportion was potentially exportable from open-ocean surface waters, as indicated by the higher specific nitrate uptake rates and f-ratios (ratio of nitrate uptake to total nitrogen consumption) at the stations located off the continental shelf. Near the coast, phytoplankton growth was predominantly supported by ammonium despite the high ambient nitrate concentrations. Along with ammonium concentrations as high as 3.6 µmol l–1, this strongly suggests that nitrate uptake in the inshore SBUS, and by extension carbon drawdown, is inhibited by ammonium, at least in winter, although this has also been hypothesised for the summer.  相似文献   
16.
Although beryllium‐10 (10Be) concentrations in stream sediments provide useful synoptic views of catchment‐wide erosion rates, little is known on the relative contributions of different sediment supply mechanisms to the acquisition of their initial signature in the headwaters. Here we address this issue by conducting a 10Be‐budget of detrital materials that characterize the morphogenetic domains representative of high‐altitude environments of the European Alps. We focus on the Etages catchment, located in the Ecrins‐Pelvoux massif (southeast France), and illustrate how in situ 10Be concentrations can be used for tracing the origin of the sand fraction from the bedload in the trunk stream. The landscape of the Etages catchment is characterized by a geomorphic transient state, high topographic gradients, and a large variety of modern geomorphic domains ranging from glacial environments to scarcely vegetated alluvial plains. Beryllium‐10 concentrations measured in the Etages catchment vary from ~1 × 104 to 4.5 × 105 atoms per gram quartz, while displaying consistent 10Be signatures within each representative morphogenetic unit. We show that the basic requirements for inferring catchment‐wide denudation from 10Be concentration measurements are not satisfied in this small, dynamic catchment. However, the distinct 10Be signature observed for the geomorphic domains can be used as a tracer. We suggest that a terrestrial cosmogenic nuclide (TCN) budget approach provides a valuable tool for the tracing of material origin in basins where the ‘let nature do the averaging’ principles may be violated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
17.
把建好的海洋碳模式应用于印度洋区域,模拟得到了印度洋中与碳有关各化学量的表层分布、垂直分布和沿子午线面的等值线分布。与实测的GEOSECS(GeochemicalOcean—Sectinn Study)数据作对比,模式较好地再现了印度洋上营养盐浓度、总碳浓度、总碱度和溶解氧的二维分布。通过模拟还发现,在稳定状态下,大气和海洋中总碳含量的分布依赖于发生在海洋中的各种物理化学过程及边界条件,水平扩散系数Kh和光合作用常数率Kg对各化学量的分布有较大影响(以前有学者认为不太重要,如 Baes[1]);南印度洋中纬地区 10°S至 30°S是14C的重要向下渗透区域,人为排放的CO2可通过这片渗透区从海洋的表层输入海洋的深层。  相似文献   
18.
Dissolved titanium distributions in the Mid-Atlantic Bight   总被引:1,自引:0,他引:1  
Stephen A. Skrabal   《Marine Chemistry》2006,102(3-4):218-229
Although titanium is abundant in Earth's crust, its sources and distribution in the ocean are poorly understood. To elucidate its behavior, distributions of dissolved (< 0.2 μm) Ti were determined in surface waters and vertical profiles from the Mid-Atlantic Bight (MAB). Concentrations of Ti decreased from 390 pM at the Delaware Bay mouth to < 100 pM across the Delaware continental shelf. In vertical profiles, small increases in bottom waters suggest a possible flux of Ti from shelf sediments, consistent with previous reports of pore water enrichments of dissolved Ti in MAB sediments. Concentrations in surface waters of the outer shelf and slope ranged between 30 and 140 pM, with most values below 90 pM. Concentrations in a 1000 m vertical profile in the eastern Gulf Stream ranged between 110 and 280 pM, and showed a variable distribution attributed to the mixing of water masses in the outer MAB. A simple model of Ti sources to the MAB suggests that atmospheric deposition of dissolved Ti is comparable to net riverine contributions and therefore must be considered in applications of Ti as a tracer of oceanographic processes.  相似文献   
19.
空间因子分析与沉积地球化学旋回元素组合的确定   总被引:1,自引:0,他引:1  
1995年5月,引用地矿部“七五”东北太平洋CCA121柱状沉积物的8个元素地球化学分析数据,利用空间因子分析方法确定两种周期度(D1=65cm,D2=105cm)内的沉积地球化学旋回元素组合,并据此探讨多金属结核成矿与物源环境的关系,研究表明,与小尺度周期(D1=65cm)对应的元素组合:Ud1(Mn,Co,Cu,Al2O3,SiO2和Ud2(Fe,Ca,Co,Cu)与大尺度周期对应的元素组合为  相似文献   
20.
Nitrogen fixation is one of the most important sources of new nitrogen in the ocean and thus profoundly affects the nitrogen and carbon biogeochemical processes. The distribution, controlling factors, and flux of N2 fixation in the global ocean remain uncertain, partly because of the lack of methodological uniformity. The 15N2 tracer assay (the original bubble method → the 15N2-enriched seawater method → the modified bubble method) is the mainstream method for field measurements of N2 fixation rates (NFRs), among which the original bubble method is the most frequently used. However, accumulating evidence has suggested an underestimation of NFRs when using this method. To improve the availability of previous data, we compared NFRs measured by three 15N2 tracer assays in the South China Sea. Our results indicate that the relationship between NFRs measured by the original bubble method and the 15N2-enriched seawater method varies obviously with area and season, which may be influenced by incubation time, diazotrophic composition, and environmental factors. In comparison, the relationship between NFRs measured by the original bubble method and the modified bubble method is more stable, indicating that the N2 fixation rates based on the original bubble methods may be underestimated by approximately 50%. Based on this result, we revised the flux of N2 fixation in the South China Sea to 40 mmol/(m2·a). Our results improve the availability and comparability of literature NFR data in the South China Sea. The comparison of the 15N2 tracer assay for NFRs measurements on a larger scale is urgently necessary over the global ocean for a more robust understanding of the role of N2 fixation in the marine nitrogen cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号