首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   851篇
  免费   114篇
  国内免费   197篇
测绘学   19篇
大气科学   66篇
地球物理   138篇
地质学   600篇
海洋学   27篇
天文学   1篇
综合类   47篇
自然地理   264篇
  2023年   4篇
  2022年   16篇
  2021年   27篇
  2020年   28篇
  2019年   42篇
  2018年   37篇
  2017年   48篇
  2016年   53篇
  2015年   30篇
  2014年   53篇
  2013年   82篇
  2012年   44篇
  2011年   53篇
  2010年   48篇
  2009年   53篇
  2008年   38篇
  2007年   46篇
  2006年   43篇
  2005年   32篇
  2004年   36篇
  2003年   28篇
  2002年   35篇
  2001年   25篇
  2000年   28篇
  1999年   29篇
  1998年   26篇
  1997年   24篇
  1996年   21篇
  1995年   27篇
  1994年   22篇
  1993年   20篇
  1992年   15篇
  1991年   11篇
  1990年   11篇
  1989年   12篇
  1988年   1篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1984年   2篇
  1981年   1篇
排序方式: 共有1162条查询结果,搜索用时 31 毫秒
991.
地缘环境单元划分方法及实例研究   总被引:2,自引:0,他引:2  
中国处于亚洲东部中央,邻国众多,周边地缘环境极其复杂,需要开展以空间分异为基础的地缘环境分析与研究。然而,现有的地缘环境研究并没有提出完整的地缘环境区划方法,也没有给出相应的地缘环境单元划分方案。本研究综合地缘政治、国际关系、地理学等学科的知识,参考地理学中传统区划方法的思路,构建地缘单元划分方法。该方法包括地缘环境单元划分原则、地缘环境单元划分流程、多指标综合评价模型三个部分。应用于南亚四国后,将南亚四国划分为四级地缘环境单元,其中三级地缘环境单元有19个,四级地缘环境单元有9个。南亚四国地缘环境单元分区的实例研究表明,该方法有助于快速把握周边地缘环境的总体格局,加深对重点地区地缘环境态势的认识,能为周边外交和周边地缘环境分析提供技术方法支持。  相似文献   
992.
松花江流域季节性气象干旱特征及风险区划研究   总被引:4,自引:2,他引:2  
冯波  章光新  李峰平 《地理科学》2016,36(3):466-474
利用松花江流域67个代表性气象站1960~2009年气象观测资料,采用标准化降水指数(SPI)为评价指标,计算松花江流域50 a中各季干旱指数,在此基础上分析了流域季节性气象干旱演变特征及规律,研究发现,松花江流域气象干旱呈现出明显的空间分带性和季节分带性。从地域变化来看,流域干旱区主要分布在东北、西南部;从季度变化来看,春旱和夏旱是流域气象干旱的主要类型,夏季干旱最严重,春季次之。建立评价指标体系实现了基于GIS技术的气象干旱风险区划,针对不同风险区提出相应的抗旱措施,为流域有效应对干旱灾害提供依据。  相似文献   
993.
根据户部岭矿区水系沉积物、土壤和岩石剖面测量结果,对Pb,Zn等成矿元素的分布特征和组合关系进行了分析,总结了户部岭铅锌矿床的地质和地球化学异常特征,通过异常查证发现3个铅锌矿(化)体,并归纳出该矿床的地球化学找矿标志,提出了找矿前景。  相似文献   
994.
The old Senhora das Fontes uranium mine, in central Portugal, consists of quartz veins which penetrated along fracture shear zones at the contact between graphite schist and orthogneiss. The mine was exploited underground until a depth of 90 m and was closed down in 1971. The ores from this mine and two others were treated in the mine area by the heap-leach process which ended in 1982. Seven dumps containing a total of about 33,800 m3 of material and partially covered by natural vegetation were left in the mine area. A remediation process took place from May 2010 to January 2011. The material deposited in dumps was relocated and covered with erosion resisting covers. Surface water and groundwater were collected in the wet season just before the remediation, in the following season at the beginning of the remediation and also after the remediation in the following dry season. Before, at the beginning and after the remediation, surface water and groundwater have an acid-to-alkaline pH, which decreased with the remediation, whereas Eh increased. In general, before the remediation, uranium concentration was up to 83 μg/L in surface water and up to 116 μg/L in groundwater, whereas at the beginning of the remediation it increases up to 183 μg/L and 272 μg/L in the former and the latter, respectively, due to the remobilization of mine dumps and pyrite and chalcopyrite exposures, responsible for the pH decrease. In general, after the remediation, the U concentration decreased significantly in surface water and groundwater at the north part of the mine area, but increased in both, particularly in the latter up to 774 μg/L in the south and southwest parts of this area, attributed to the remobilization of sulphides that caused mobilization of metals and arsenic which migrated to the groundwater flow. Uranium is adsorbed in clay minerals, but also in goethite as indicated by the geochemical modelling. After the remediation, the saturation indices of oxyhydroxides decrease as pH decreases. The remediation also caused decrease in Cd, Co, Cr, Ni, Pb, Zn, Cu, As, Sr and Mn concentrations of surface water and groundwater, particularly in the north part of the mine area, which is supported by the speciation modelling that shows the decrease of most dissolved bivalent species. However, in general, after the remediation, Th, Cd, Al, Li, Pb, Sr and As concentrations increased in groundwater and surface water at south and southwest of the mine area. Before and after the remediation, surface water and groundwater are contaminated in U, Cd, Cr, Al, Mn, Ni, Pb, Cu and As. Remediation caused only some improvement at north of the mine area, because at south and southwest part, after the remediation, the groundwater is more contaminated than before the remediation.  相似文献   
995.
The Bulonggoer paleo-oil reservoir (BPR) on the northwest Junggar Basin is the first Devonian paleo-oil reservoir discovered in North Xinjiang, China. Solid bitumens occur within sandstone pores and as veins filling fractures. Samples of both types were analyzed using stable carbon isotope and reflectance measurements, as well as molecular biomarker parameters.The extremely positive δ13C values and biomarker indicators of depositional environment/lithology, such as pristane/phytane (Pr/Ph), C29/C30 hopane, diasteranes/regular steranes and dibenzothiophene/phenanthrene ratios, indicate a siliciclastic source for the BPR and their deposition in a highly reducing hypersaline environment. The presence of long chain n-alkanes and abundant tetracyclic diterpanes, C20–C21 tricyclic terpanes and perylene are indicators of higher plant organic matter input. Moreover, the bimodal distribution of C27 > C28 < C29 regular steranes and abundant methyltriaromatic steroids also support a contribution of microalgae as well as higher plants organic matter. The similar molecular composition and thermal maturity parameters indicate that the reservoir and veined solid bitumens were altered from a common paleo-petroleum, which originated from peak oil window matured source rocks.All solid bitumens from the BPR are characterized by relatively low bitumen reflectance values (Rb% < 0.7), suggesting that they were generated from low temperature processes rather than oil thermal cracking. Comparatively, the Rb% values for veined bitumens are higher than reservoir bitumens, indicating that the veined bitumens occurred earlier and experienced higher thermal conditions.  相似文献   
996.
Unsaturated zone pore water has the potential to record history of recharge, palaeoenvironment, pollution movement and water-rock interaction as it percolates through and moves towards the water table. In this study, two 6-m cores from the Badain Jaran desert (NW China) were collected to explore this potential using directly extracted moisture. Pore waters in these unsaturated zone sediments (1–5% moisture by wet weight) were directly extracted using immiscible liquid displacement and then analysed for major anions, cations and trace elements. Results show enrichment in pore water chemistry in the top 1–2 m where strong temperature and moisture fluxes occur. The enrichment in cations relative to chloride is primarily due to silicate mineral dissolution during infiltration. High nitrate and low iron concentrations indicate the overall oxidizing environment, which allows the mobility of oxyanions, such as uranium, arsenic and chromium. The trace elements show enrichment in the upper zone of fluctuation where chemical gradients are strong, but with lesser reaction lower in the profile. The calculated groundwater recharge rates using the chloride mass balance are negligible in this arid region between 1.5 and 3.0 mm/year. The modern rainfall infiltration signature contrasts with that of the underlying groundwater body, which has a distant, regional recharge signature.This reconnaissance study demonstrates the potential for a new geochemical approach to studying geochemical processes in the unsaturated sediments in semi-arid environments due to both natural and human influences. The use of directly extracted water, rather than extraction by dilution (elutriation), facilitates an improved understanding of hydrological and geochemical processes in the unsaturated zone and into the capillary fringe at the water table, because it avoids potential chemical changes induced during elutriation.  相似文献   
997.
西准噶尔古生代地层区划及古地理演化   总被引:5,自引:0,他引:5       下载免费PDF全文
龚一鸣  纵瑞文 《地球科学》2015,40(3):461-484
根据大地构造环境与沉积组合(建造)类型,地层序列与地层接触关系,古地理格局与古环境条件,古生物类型与生物古地理区系,地层类型与地层的变形、变质和变位特征,地层区划的边界类型与识别标志,地层区划可以区分为综合和断代地层区划2类,都可以分为4级:地层大区(stratomegaregion)、地层区(stratoregion)、地层分区(stratosubregion)和地层小区(stratomicroregion).基于近年来取得的大量新资料、新认识和上述地层区划6方面的判据,西准噶尔地区古生代地层区划自北向南划分为萨吾尔山地层小区、沙尔布尔提山地层小区、玛依力山地层小区和克拉玛依地层小区.在构造古地理上,西准噶尔地区古生代表现为多岛洋和软碰撞的特点,志留纪后期至早石炭世是多岛洋和软碰撞的鼎盛时期,也是西准噶尔地区古生代地层区划的重要形成时期;晚石炭世至二叠纪,西准噶尔地区主体脱离海洋环境,进入陆内造山阶段,西准噶尔地区古生代地层的分区性逐渐消失.在生物古地理上,早古生代西准噶尔地区属于介于太平洋生物大区与大西洋生物大区之间的混生生物大区,不同于东北部西伯利亚板块南部由Tuvaella(图瓦贝)动物群所代表的生物区系;从志留纪至泥盆纪,西准噶尔地区的生物组合面貌明显属于热带-亚热带的古特提斯生物大区;晚石炭世-二叠纪西准噶尔地区陆相地层中的植物群面貌显示出明显的北温带安加拉植物群的特点.在沉积古地理上,西准噶尔地区古生代的作用相包括正常沉积与事件沉积,特别是反映活动构造环境的内力事件沉积特别发育,如火山爆发相、火山溢流相和震积岩相;环境相包括古陆、河流相、滨-浅海相和半深海-深海相.   相似文献   
998.
利用试验数据校正并验证了机理性的作物生长模型WOFOST,随后模拟了华北42个站点1961—2006年夏玉米的光温和气候生产潜力。并首次运用新型统计检验聚类方法(CAST),对夏玉米光温及气候生产潜力的要素场分别进行了定量化分区。结果表明,华北夏玉米光温及气候生产潜力均分为5个不同荷载中心的区域。与农业气象传统等值线分区方法相比,将作物模型与CAST相结合进行的生产潜力区划可以更客观地反映以荷载中心台站为代表的产量的时空分布特征。这对于指导区域农业气候区划,实现区域农业可持续发展具有重要的理论及现实意义。  相似文献   
999.
利用暴雨区连续追踪的思路和全国2481个气象站逐日降水资料对1961—2019年全国区域连续性暴雨过程(Regional Continuity Rainstorm Process,RCRP)进行客观识别,并根据RCRP的持续时间、影响范围、最大日降水量和最大过程降水量建立和改进危险性评估模型和危险性区划。结果显示:1961—2019年中国共发生2294次RCRP,危险性排名前十强的RCRP与历史记录相符;其危险性空间分布特征与我国降水气候态分布相似,由东南向西北逐级递减;我国RCRP的高危险性区域位于华南和江南地区;危险性的季节空间分布与同季节的降水特征相关,春季华南地区的RCRP高危险性等级体现了我国华南前汛期的影响;夏季华北和东北地区的RCRP危险性高于其他季节,沿海地区的高危险性体现了台风暴雨的影响;秋季四川北部的危险区主要体现了华西秋雨的影响;单次RCRP危险性区划表征本次暴雨洪涝受灾程度大小的分布情况,可以直观地判断此次RCRP对我国相应区域造成暴雨洪涝灾害的大小分布情况。其研究结果增进了对于RCRP演变规律的认识,对于预测未来RCRP季节或次季节内等不同时间内的区域危险性强度大小及其相关的暴雨洪涝灾害风险防范具有重要意义。  相似文献   
1000.
罗家窝棚组是哈尔滨地区的第四纪下限地层,其岩性是紫红色砂砾石,被认为是冰碛物堆积。早期的区测资料对其进行了岩性描述,对于其它地层属性,特别是地球化学属性的认识尚未涉及。为此,本文选择黑龙江五常拉林镇罗家窝棚村层型剖面作为研究对象,首次对其沉积学、矿物学、元素地球化学展开综合研究,以揭示其沉积过程和沉积环境。结果表明,这套砾石分选和磨圆较差,风化程度很高,无定向性排列,砾石成分以陆源碎屑岩(砂岩和粉砂岩,44.2%)和花岗岩(37.4%)为主,其次为凝灰岩(11.2%),石英质、闪长岩、流纹岩和玄武岩等少量出现。重矿物组成以赤/褐铁矿占绝对优势(87.5%),其次是白钛石(5.0%),其它重矿物含量较少。元素地球化学揭示,罗家窝棚组中的细颗粒碎屑以及泥质基质经历了很强的化学风化过程,是初次循环的结果。砾石岩性和地球化学组成共同揭示了这些碎屑主要来源于长英质母岩,但中性和铁镁质母岩也有少量贡献。综合沉积学、矿物学和地球化学地层属性,本文认为罗家窝棚组地层是在炎热气候条件下的洪积物堆积,而非寒冷气候条件下的冰碛物。这项研究对于哈尔滨地区第四纪地层的划分和早更新世构造—地貌—气候—水系演化等地质事件的重建具有重要意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号