首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   696篇
  免费   163篇
  国内免费   141篇
测绘学   4篇
大气科学   23篇
地球物理   238篇
地质学   478篇
海洋学   211篇
天文学   10篇
综合类   13篇
自然地理   23篇
  2024年   3篇
  2023年   6篇
  2022年   19篇
  2021年   13篇
  2020年   18篇
  2019年   21篇
  2018年   26篇
  2017年   53篇
  2016年   50篇
  2015年   31篇
  2014年   56篇
  2013年   39篇
  2012年   47篇
  2011年   94篇
  2010年   36篇
  2009年   57篇
  2008年   45篇
  2007年   48篇
  2006年   52篇
  2005年   31篇
  2004年   36篇
  2003年   30篇
  2002年   22篇
  2001年   19篇
  2000年   16篇
  1999年   17篇
  1998年   16篇
  1997年   13篇
  1996年   17篇
  1995年   18篇
  1994年   9篇
  1993年   6篇
  1992年   5篇
  1991年   1篇
  1990年   5篇
  1989年   7篇
  1988年   4篇
  1987年   1篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1978年   1篇
  1954年   1篇
排序方式: 共有1000条查询结果,搜索用时 15 毫秒
31.
昭通国家级页岩气示范区黄金坝气田是继礁石坝和长宁—威远之后中国又一个在页岩气勘探、开发领域实现重大突破的地区,为了系统地展示黄金坝气田页岩气资源富集的储层条件,为未来的勘探工作提供参考,以五峰—龙马溪组页岩气储层为研究对象,从区域地质条件、储层岩石学、物性和地球化学4个方面对该页岩气储层进行了综合研究。结果表明稳定的区域构造和良好的顶底板条件是黄金坝地区页岩气资源富集的关键,良好的保存条件使储层维持了较高的压力(压力系数1);较高的孔隙度(平均4%)和TOC含量(目的层2%)提供了良好的储集空间,使储层具有较高的含气量(1.35~3.48 cm3/g,平均2.50 cm3/g);天然气地球化学数据表明,区内天然气主要成分为CH4(97%),其次还含有少量的C2H6、C3H8和CO2;天然气同位素数据表明烃类C同位素组成发生了倒转,表明储层具有良好的封闭性。但储层孔隙系统较为复杂,且非均质性极强,从而导致渗透率较低,在储层改造施工过程中应予以充分考虑。总体上,黄金坝气田具有较好的开发前景,生产测试表明,区内直井压裂产量为0.5×104~3.5×104m3/d/井,水平井压裂产量可达12×104~40×104m3/d/井。  相似文献   
32.
利用PHREEQC软件模拟CO2侵入后,尕斯库勒盐湖中CO2-卤水-岩盐之间的相互作用。CO2侵入卤水层后,卤水中元素的化学形态种类和大小发生变化,特别是碳酸盐型的络合物形态增多。CO2侵入后,除了碳酸盐、石盐和硫酸盐矿物达到饱和被析出外,其余矿物的不饱和程度加剧,卤水的TDS增大,pH值减小。卤水中U的含量在CO2侵入后发生沉淀而减小。研究成果对深入评估区域内盐水层CO2地质封存的环境风险和利用CO2分离提取盐湖卤水中的铀元素提供理论依据。  相似文献   
33.
Late Jurassic organic-rich shales from Shabwah sub-basin of western Yemen were analysed based on a combined investigations of organic geochemistry and petrology to define the origin, type of organic matter and the paleoenvironment conditions during deposition. The organic-rich shales have high total sulphur content values in the range of 1.49–4.92 wt. %, and excellent source rock potential is expected based on the high values of TOC (>7%), high extractable organic matter content and hydrocarbon yield exceeding 7000 ppm. The high total sulphur content and its relation with high organic carbon content indicate that the Late Jurassic organic-rich shales of the Shabwah sub-basin were deposited in a marine environment under suboxic-anoxic conditions. This has been evidenced from kerogen microscopy and their biomarker distributions. The kerogen microscopy investigation indicated that the Late Jurassic organic-rich shales contain an abundant liptinitic organic matter (i.e., alginite, structureless (amorphous organic matters)). The presence of alginite with morphology similar to the lamalginite alga and amorphous organic matter in these shale samples, further suggests a marine origin. The biomarker distributions also provide evidence for a major contribution by aquatic algae and microorganisms with a minor terrigenous organic matter input. The biomarkers are characterized by unimodal distribution of n-alkanes, low acyclic isoprenoids compared to normal alkanes, relatively high tricyclic terpanes compared to tetracyclic terpanes, and high proportion of C27 and C29 regular steranes compared to C28 regular sterane. Moreover, the suboxic to anoxic bottom water conditions as evidenced in these Late Jurassic shales is also supported based on relatively low pristane/phytane (Pr/Ph) ratios in the range of 0.80–1.14. Therefore, it is envisaged here that the high content of organic matter (TOC > 7 wt.%) in the analysed Late Jurassic shales is attributed to good organic matter (OM) preservation under suboxic to anoxic bottom water conditions during deposition.  相似文献   
34.
Mass transport deposits and geological features related to fluid flow such as gas chimneys, mud diapirs and volcanos, pockmarks and gas hydrates are pervasive on the canyon dominated northern slope of the Pearl River Mouth basin of the South China Sea. These deposits and structures are linked to serious geohazards and are considered risk factors for seabed installations. Based on high resolution three dimensional seismic surveys, seismic characteristics, distributions and origins of these features are analyzed. A distribution map is presented and geometrical parameters and spatial distribution patterns are summarized. Results show that various groups of the mapped features are closely tied to local or regional tectonism and sedimentary processes. Mass transport complexes are classified as slides near the shelf break, initially deformed slumps on the flanks of canyons and highly deformed slumps on the lower slope downslope of the mouth of canyons. We propose them to be preconditioned by pore pressure changes related to sea level fluctuations, steep topography, and fluid and fault activities. Gas chimneys are mainly located in the vicinity of gas reservoirs, while bottom-simulating reflectors are observed within the gas chimney regions, suggesting gas chimneys serve as conduits for thermogenic gas. Mud diapirs/volcanos and pockmarks are observed in small numbers and the formation of pockmarks is related to underlying gas chimneys and faults. This study aims at reducing risks for deep-water engineering on the northern slope of South China Sea.  相似文献   
35.
When trying to improve gas productivity from unconventional sources a first aim is to understand gas storage and gas flow potential through the rock by investigating the microstructure, mineralogy and matrix porosity of unfractured shale. The porosity and mineralogy of the Mulgrave Shale member of the Whitby Mudstone Formation (UK) were characterized using a combination of microscopy, X-ray diffraction and gas adsorption methods on samples collected from outcrops. The Whitby Mudstone is an analogue for the Dutch Posidonia Shale which is a possible unconventional source for gas. The Mulgrave shale member of the Whitby Mudstone Formation can microstructurally be subdivided into a fossil rich (>15%) upper half and a sub-mm mineralogically laminated lower half. All clasts are embedded within a fine-grained matrix (all grains < 2 μm) implying that any possible flow of gas will depend on the porosity and the pore network present within this matrix. The visible SEM porosity (pore diameter > 100 nm) is in the order of 0.5–2.5% and shows a non-connected pore network in 2D. Gas adsorption (N2, Ar, He) porosity (pore diameters down to 2 nm) has been measured to be 0.3–7%. Overall more than 40% of the visible porosity is present within the matrix. Comparing the Whitby Mudstone Formation to other (producing) gas shales shows that the rock plots in the low porosity and high clay mineral content range, which could imply that Whitby Mudstone shales could be less favourable to mechanical fracturing than other gas shales. Estimated permeability indicates values in the micro-to nano-darcy range.  相似文献   
36.
Measuring gas content is an essential step in estimating the commerciality of gas reserves. In this study,eight shale core samples from the Mouye-1 well were measured using a homemade patented gas desorption apparatus to determine their gas contents. Due to the air contamination that is introduced into the desorption canister, a mathematical method was devised to correct the gas quantity and quality.Compared to the chemical compositions of desorbed gas, the chemical compositions of residual gas are somewhat different. In residual gas, carbon dioxide and nitrogen record a slight increase, and propane is first observed. This phenomenon may be related to the exposure time during the transportation of shale samples from the drilling site to the laboratory, as well as the differences in the mass, size and adsorptivity of different gas molecules. In addition to a series of conventional methods, including the USBM direct method and the Amoco Curve Fit(ACF) method, which were used here for lost gas content estimation, a Modified Curve Fit(MCF) method, based on the 'bidisperse' diffusion model, was established to estimate lost gas content. By fitting the ACF and MCF models to gas desorption data, we determined that the MCF method could reasonably describe the gas desorption data over the entire time period, whereas the ACF method failed. The failure of the ACF method to describe the gas desorption process may be related to its restrictive assumption of a single pore size within shale samples. In comparison to the indirect method, this study demonstrates that none of the three methods studied in this investigation(USBM, ACF and MCF) could individually estimate the lost gas contents of all shale samples and that the proportion of free gas relative to total gas has a significant effect on the estimation accuracy of the selected method. When the ratio of free gas to total gas is lower than 45%, the USBM method is the best for estimating the lost gas content, whereas when the ratio ranges from 45% to 75% or is more than 75%, the ACF and MCF methods, are the best options respectively.  相似文献   
37.
《China Geology》2018,1(3):367-373
There are many factors affecting the instability of the submarine hydrate-bearing slope (SHBS), and the interaction with hydrate is very complicated. In this paper, the mechanical mechanism of the static liquefaction and instability of submarine slope caused by the dissociation of natural gas hydrate (NGH) resulting in the rapid increase of pore pressure of gas hydrate-bearing sediments (GHBS) and the decrease of effective stress are analyzed based on the time series and type of SHBS. Then, taking the typical submarine slope in the northern South China Sea as an example, four important factors affecting the stability of SHBS are selected, such as the degree of hydrate dissociation, the depth of hydrate burial, the thickness of hydrate, and the depth of seawater. According to the principle of orthogonal method, 25 orthogonal test schemes with 4 factors and 5 levels are designed and the safety factors of submarine slope stability of each scheme are calculated by using the strength reduction finite element method. By means of the orthogonal design range analysis and the variance analysis, sensitivity of influential factors on stability of SHBS are obtained. The results show that the degree of hydrate dissociation is the most sensitive, followed by hydrate burial depth, the thickness of hydrate and the depth of seawater. Finally, the concept of gas hydrate critical burial depth is put forward according to the influence law of gas hydrate burial depth, and the numerical simulation for specific submarine slope is carried out, which indicates the existence of critical burial depth.  相似文献   
38.
川东南丁山地区是近年来四川盆地页岩气勘探开发的热点区域,裂缝的发育对页岩含气性及保存条件有重要的影响。综合运用野外露头、岩心、测井资料,结合岩石脆性矿物含量、岩石力学参数等数据,深入分析龙马溪组页岩裂缝发育特征和控制因素,并探讨了裂缝发育对含气性的影响。结果表明,丁山地区龙马溪组页岩裂缝主要以构造成因的剪切缝为主,裂缝优势方位共6组,主要包括4组平面剪切缝和2组剖面剪切缝,其发育主要受2个方向、3个阶段的构造应力场影响而成;裂缝延伸稳定,平均密度小,宽度小,充填程度高,主要被方解石和黄铁矿等充填。裂缝受控因素主要包括古构造应力场、构造部位、脆性矿物组分、岩石力学性质等;断层对裂缝发育具有明显的控制作用,其中断层两盘均存在裂缝发育程度急剧下降的临界范围,临界范围内裂缝发育程度高,超过此临界范围,裂缝发育程度变差且变化趋于平缓;不同期次的裂缝中,形成时间晚、规模过大、充填程度不高、与现今地应力方向一致或呈低角度相交的裂缝易造成页岩气的散失,对提高页岩含气性不利;龙马溪组岩石脆性矿物含量高,脆性指数属中等偏上程度,有利于构造缝发育且可压性较好。随着距齐岳山断裂距离的适当增加,龙马溪组页岩埋藏深度适中,地层压力增大,抗压强度增强高,脆性指数适中,构造保存条件变好,有利于不同方位的裂缝发育和页岩含气量的增加,位于该区域的DY2井与DY4井均位于该有利区域,含气性良好。研究结果对下一步深化页岩气勘探开发具有重要指导作用。  相似文献   
39.
Seismic properties of sediments are strongly influenced by pore fluids. Stiffness of unconsolidated marine sediment increases with the presence of gas hydrate and decreases with the presence of gas. A strong bottom-simulating reflector (BSR) observed on a seismic profile in the Makran accretionary prism, offshore Pakistan, indicates the presence of gas hydrate and free-gas across the BSR. Elastic properties of gas depend largely on pressure and temperature. We, therefore, first determine the elastic modulus of gas at pressure and temperature calculated at the BSR depth in the study region. The interval velocities derived from the seismic data are interpreted by the effective medium theory, which is a combination of self-consistent approximation and differential effective medium theories, together with a smoothing approximation, for assessment of gas hydrate and free-gas. The results show the saturations of gas hydrate and free-gas as 22 and 2.4% of pore space, respectively, across the BSR.  相似文献   
40.
This paper reports all available geochemical data on sediments and pore waters from the Xisha Trough on the northern continental margin of the South China Sea. The methane concentrations in marine sediments display a downhole increasing trend and their carbon isotopic compositions (δ 13C = −25 to −51‰) indicate a thermogenic origin. Pore water Cl concentrations show a range from 537 to 730 mM, and the high Cl samples also have higher concentrations of Br, Na+, K+, and Mg2+, implying mixing between normal seawater and brine in the basin. The SO4 2− concentrations of pore waters vary from 19.9 to 36.8 mM, and show a downhole decreasing trend. Calculated SMI (sulfate-methane interfaces) depths and sulfate gradients are between 21 and 47 mbsf, and between −0.7 and −1.7 mM/m, respectively, which are similar to values in gas hydrate locations worldwide and suggest a high methane flux in the basin. Overall, the geochemical data, together with geological and geophysical evidence, such as the high sedimentation rates, high organic carbon contents, thick sediment piles, salt and mud diapirs, active faulting, abundant thermogenic gases, and occurrence of huge bottom simulating reflector (BSR), are suggestive of a favorable condition for occurrence of gas hydrates in this region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号