首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   53篇
  国内免费   93篇
测绘学   26篇
大气科学   5篇
地球物理   90篇
地质学   345篇
海洋学   12篇
天文学   5篇
综合类   41篇
自然地理   45篇
  2024年   7篇
  2023年   4篇
  2022年   10篇
  2021年   15篇
  2020年   17篇
  2019年   22篇
  2018年   18篇
  2017年   24篇
  2016年   20篇
  2015年   12篇
  2014年   17篇
  2013年   33篇
  2012年   16篇
  2011年   18篇
  2010年   15篇
  2009年   31篇
  2008年   31篇
  2007年   28篇
  2006年   36篇
  2005年   23篇
  2004年   21篇
  2003年   15篇
  2002年   16篇
  2001年   11篇
  2000年   41篇
  1999年   8篇
  1998年   6篇
  1997年   10篇
  1996年   10篇
  1995年   5篇
  1994年   9篇
  1993年   4篇
  1992年   1篇
  1991年   6篇
  1989年   6篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有569条查询结果,搜索用时 15 毫秒
501.
The Dadeldhura thrust sheet inm western Nepal consists of Proterozoic–Lower Paleozoic sedimentary and plutonic rocks, and their metamorphic equivalents, that rest structurally on Proterozoic strata of the Lesser Himalayan sequence. Although regional metamorphism and ductile deformation were widespread during Tertiary thrust emplacement, relicts of early Paleozoic tectonism are preserved locally. New field and geochronologic studies, together with the findings of previous workers, indicate that this early Paleozoic tectonism included: (1) regional metamorphism to at least garnet grade, (2) regional folding of a thick metamorphic sequence into a broad east–west trending syncline, (3) outcrop-scale folding of metasedimentary rocks, (4) emplacement of Cambro–Ordovician granitic bodies during and after the metamorphism and deformation, (5) uplift and erosion of the metamorphic sequence, with garnet-grade rocks locally exposed at the surface, and (6) derivation of Ordovician conglomeratic sandstones from the early Paleozoic orogen. Similar records of metamorphism, deformation, and uplift/erosion have been found in other regions of the Himalaya, indicating that rocks of the Dadeldhura thrust sheet were originally involved in a regionally extensive orogenic system. Future tectonic models of Himalayan orogenesis must accommodate this early Paleozoic event.  相似文献   
502.
吴中海  赵根模  刘杰 《地质学报》2016,90(6):1062-1085
2015年尼泊尔大地震的余震分布、震源机制解、震源破裂过程反演结果和喜马拉雅造山带的新生代地质构造特点表明,此次大地震的控震构造是构成印度板块与欧亚板块之间构造边界带的喜马拉雅主逆冲断裂,是印度板块沿该断裂带向欧亚板块之下低角度俯冲过程中导致的一次盲断层型逆冲断裂活动。地震产生的破裂面从北西向东南方向传播,累计长度170km左右,最大倾向滑移量5-7m。该断裂带全新世活动强烈,其上的历史大地震活动频率高、强度大,M≥7.5地震的原地复发平均间隔在500年左右,而在地震活跃阶段分段破裂的平均间隔只有10年左右,并且1800年以来的多次大地震活动显示出从西向东迁移的规律。历史地震活动过程指示,该断裂带上的兴都库什、尼泊尔西部、锡金-不丹和印缅交界区4个空区段的未来大地震危险性较显著,特别是位于此次大地震东部的两个空区。印度板块向北与欧亚板块间的低角度、高强度陆陆俯冲碰撞作用是中国大陆现今地壳变形的主要动力来源。这是中国大陆强震频发的主要地质构造原因,也决定了喜马拉雅与青藏高原及邻区的大地震活动之间明显的时空关联性,主要表现为大地震活跃阶段在时间上的交替出现和大地震沿垂直喜马拉雅造山带的纵向迁移过程。历史地震活动过程和西南地区地震危险性分析成果揭示,在新一轮喜马拉雅大地震活跃形势下,中国大陆将面临更为严峻的大地震危险形势,尤其是青藏高原及邻区晚第四纪活动性显著的区域性构造带或断裂带的潜在强震危险性将比较突出,主要包括:藏南的近南北向裂谷带与北西向右旋走滑断裂带,川滇地块中的安宁河-小江断裂带与大凉山断裂带、南汀河断裂带与畹町断裂带、澜沧-景洪断裂带和滇西北大理-丽江裂陷带,西北地区的西昆仑山前逆冲-褶皱带、阿尔金断裂带和天山的主要逆冲-褶皱变形带等。由于当前中国及西南地区的活动构造调查研究存在的诸多不足限制了对区域大地震危险性更为全面准确的地质评估,并正成为城镇化与重大工程规划建设过程中地壳稳定性评价的“瓶颈”所在。因此,未来的地质调查工作中,建议应紧密结合国家需求,进一步重视新构造与活动构造的调查研究,尽快部署完成重要活动构造区带的活动断裂普查,并重视和加强与邻国的国际合作与交流。  相似文献   
503.
The relationship between the breakup of eastern Gondwanaland and the Kerguelen plume activity is a subject of debate. The Cona mafic rocks are widely exposed in the Cona area of the eastern Himalaya of south Tibet, and are studied in order to evaluate this relationship. Cona mafic rocks consist predominantly of massive basaltic flows and diabase sills or dikes, and are divided into three groups. Group 1 is composed of basaltic flows and diabase sills or dikes and is characterized by higher TiO2 and P2O5 content and OIB-like trace element patterns with a relatively large range of Nd(T) values (+ 1.84 to + 4.67). A Group 1 diabase sill has been dated at 144.7 ± 2.4 Ma. Group 2 consists of gabbroic sills or crosscutting gabbroic intrusions characterized by lower TiO2 and P2O5 content and “depleted” N-MORB-like trace element patterns with relatively higher, homogeneous Nd(T) values (+ 5.68 to + 6.37). A Group 2 gabbroic diabase dike has been dated at 131.1 ± 6.1 Ma. Group 3 basaltic lavas are interbedded with the Late Jurassic–Early Cretaceous pelitic sediments; they have compositions transitional between Groups 1 and 2 and flat to slightly enriched trace element patterns. Sr–Nd isotopic data and REE modeling indicate that variable degrees of partial melting of distinct mantle source compositions (enriched garnet–clinopyroxene peridotite for Group 1 and spinel-lherzolite for Group 2, respectively) could account for the chemical diversity of the Cona mafic rocks. Geochemical similarities between the Cona mafic rocks and the basalts probably created by the Kerguelen plume based on spatial–temporal constraints seem to indicate that an incubating Kerguelen plume model is more plausible than a model of normal rifting (nonplume) for the generation of the Cona mafic rocks. Group 1 is interpreted as being related to the incubating Kerguelen plume–lithosphere interaction; Group 2 is likely related to an interaction between anhydrous lithosphere and rising depleted asthenosphere enriched by a “droplet” originating from the Kerguelen plume, while Group 3 may be attributed to thermal erosion resulting in the partial melting of lithosphere during the long-term incubation of a magma chamber/pond at a shallow crustal level. The Cona mafic rocks are probably related to a progressively lithospheric thinning beneath eastern Gondwanaland from 150–145 Ma to 130 Ma. Our new observations seem to indicate that the Kerguelen plume may have started its incubation as early as the latest Jurassic or earliest Cretaceous period and that the incubating Kerguelen plume may play an active role in the breakup of Greater India, eastern India, and northwestern Australia.  相似文献   
504.
The composite stereographic projection of orientations of the compression and tension axes using thirty-nine fault-plane solutions of earthquakes from two active seismogenic sources of Nepal and adjoining areas were examined and the nature of stress pattern and their influence on tectonics in the region have been studied. The seismogenic source located in Eastern Nepal region, which has been the site of 1934 Bihar-Nepal great earthquake of M 8.4, is presently experiencing N-S to NE-SW directed compressive stresses. The inferred pattern of compression axes in Western Nepal region suggests a shallow compressive stress, dipping N-S to NE-SW. Approximately similar nature of the stress regime is observed in Western and Eastern regions of Nepal, separated by nearly 700 km; it shows N-S to NNE-SSW direction of compression and underthrusting of the Indian Plate beneath the Himalaya at a shallow angle. Present study indicates that the stress is being released along the strikes of some of the transverse faults present in the region since the compressive stress exerted by the northward movement of the Indian Plate is approximately perpendicular to the Himalayan collision belt. Unilateral stress pattern generated by the northward movement of the Indian Plate in the central part of the Himalaya reveals that the present day collision occurs roughly perpendicular to the local strike of the Himalaya.  相似文献   
505.
深反射地震揭示喜马拉雅地区地壳上地幔的复杂结构   总被引:12,自引:5,他引:12       下载免费PDF全文
报告了中、美两国在喜马拉雅山区进行的第一次深反射地震试验的结果.试验剖面南起喜马拉雅山山脊南亚东县的帕里镇,向北穿过喜马拉雅山脊的荡拉,到达康马南的萨马达.剖面长约100km.共中心点(CMP)叠加剖面上显示出:1.在地壳中部有一强反射带,向北缓倾斜下去,延长达100km以上.它可能代表了一个活动的逆冲断裂或是一条巨大的拆离带,印度地壳整体或下地壳沿此拆离层俯冲到藏南之下.2.上部地壳的反射很丰富,显示了上地壳存在着大规模的叠瓦状结构.3.下地壳的反射同相轴呈现短而有规律的分布,显示了塑性流变特征.4.在测线南部莫霍反射明显,深度达72-75km.发现南部有双莫霍层的存在.5.试验中还取得莫霍层下面32,38,48s等双程走时的多条反射,向北倾斜,反射同相轴延续较长,信息丰富,反映了上地幔的成层结构和变形特征.这些结果对印度大陆地壳整体或其下地壳俯冲到藏南特提斯喜马拉雅地壳之下,并导致西藏南端地壳增厚的观点,给予了实质性的支持.  相似文献   
506.
Previous studies have drawn attention to substantial hydrological changes taking place in mountainous watersheds where hydrology is dominated by cryospheric processes. Modelling is an important tool for understanding these changes but is particularly challenging in mountainous terrain owing to scarcity of ground observations and uncertainty of model parameters across space and time. This study utilizes a Markov Chain Monte Carlo data assimilation approach to examine and evaluate the performance of a conceptual, degree‐day snowmelt runoff model applied in the Tamor River basin in the eastern Nepalese Himalaya. The snowmelt runoff model is calibrated using daily streamflow from 2002 to 2006 with fairly high accuracy (average Nash–Sutcliffe metric ~0.84, annual volume bias < 3%). The Markov Chain Monte Carlo approach constrains the parameters to which the model is most sensitive (e.g. lapse rate and recession coefficient) and maximizes model fit and performance. Model simulated streamflow using an interpolated precipitation data set decreases the fractional contribution from rainfall compared with simulations using observed station precipitation. The average snowmelt contribution to total runoff in the Tamor River basin for the 2002–2006 period is estimated to be 29.7 ± 2.9% (which includes 4.2 ± 0.9% from snowfall that promptly melts), whereas 70.3 ± 2.6% is attributed to contributions from rainfall. On average, the elevation zone in the 4000–5500 m range contributes the most to basin runoff, averaging 56.9 ± 3.6% of all snowmelt input and 28.9 ± 1.1% of all rainfall input to runoff. Model simulated streamflow using an interpolated precipitation data set decreases the fractional contribution from rainfall versus snowmelt compared with simulations using observed station precipitation. Model experiments indicate that the hydrograph itself does not constrain estimates of snowmelt versus rainfall contributions to total outflow but that this derives from the degree‐day melting model. Lastly, we demonstrate that the data assimilation approach is useful for quantifying and reducing uncertainty related to model parameters and thus provides uncertainty bounds on snowmelt and rainfall contributions in such mountainous watersheds. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
507.
The Upper Triassic Langjiexue Group in southeastern Tibet has long been an enigmatic geological unit. It belongs tectonically to the northern Tethys Himalayan zone, but provenance signatures of the detritus it contains are significantly different from those of typical Tethys Himalayan sandstones. Because the Langjiexue Group is everywhere in fault contact with Tethys Himalayan strata, its original paleogeographic position has remained controversial for a long time. According to some researchers, the Langjiexue Group was deposited onto the northern edge of the Indian passive continental margin, whereas others interpreted it as an independent block accreted to the northern Indian margin only during final India-Asia convergence and collision in the Paleocene. This study compares the Langjiexue Group and coeval Upper Triassic strata of the southern Tethys Himalayan zone(Qulonggongba Formation). Our new provenance data indicate that Qulonggongba Formation sandstones contain common felsic volcanic rock fragments, minor plagioclase, and euhedral to subhedral zircon grains yielding Late Paleozoic to Triassic ages. These provenance features compare well with those of the Langjiexue Group. Because the Qulonggongba Formation certainly belongs to the Tethys Himalayan zone, the provenance similarity with the Langjiexue Group indicates that the latter is also an in situ Tethys Himalayan sedimentary sequence rather than part of an exotic block. Volcanic detritus including Late Paleozoic to Triassic zircon grains in both Langjiexue Group and Qulonggongba Formation are interpreted to have been derived from the distant Gondwanide orogen generated by Pan-Pacific subduction beneath the southeastern margin of Gondwana. The Qulonggongba Formation, deposited above marlstones of the lower Upper Triassic Tulong Group, is overlain by India-derived coastal quartzose sandstones of the uppermost Triassic Derirong Formation. Deposition of both the Qulonggongba Formation and the Langjiexue Group were most likely controlled by regional tectonism, possibly a rifting event along the northern margin of Gondwana.  相似文献   
508.
Red tide, a recurrent phenomenon has become conspicuous in several Kashmir lake ecosystems since 1991. The responsible organism (Euglena pedunculata), a rare flagellate rediscovered in the Kashmir Himalaya (Khan 1993) caused first and unprecedented red tide outbreak, constituting a maximum of 96% of resident numerical phytoplankton density in Dal Lake. At present, conflicting hypotheses exist on the generation of causal assemblage(s) imparting redness to waters: Jeeji Bai (1991) linked its origin to acid precipitation – a fallout of burning oil‐fields during the Gulf War – whilst Khan (1993) holds local factor(s) responsible. Field/experimental studies support the latter contention that the influx of untreated sewage, in unison with warm temperatures, high levels of PhAR, iron and interruption to hydrological flow‐pattern together with absence/or reduction in grazing activity created conducive environmental milieu for red tide outbreak. Dal Lake “red tide” drifted the bloom‐inoculum to other waters, including Lake Wular, where additional ecological niches were carved out, threatening the aesthetic value and biological diversity of Kashmir lakes. Ecological monitoring indicates frequent seasonal red tide occurrence in Dal Lake (including summer‐autumn event of 1998) which testifies its unabated eutrophication status. Further studies are needed on ecological adaptability and biogeographic distribution of this rare and unique red tide‐causing flagellate.  相似文献   
509.
Stable hydrogen (δD) and oxygen (δ18O) isotope ratios of the headwaters of the Indus and its tributaries, surface ice in glaciers, saline and fresh water lakes and thermal springs in the Himalayan and Trans-Himalayan (Kashmir) region are reported. The δ5D-δ18 relationship for the river samples shows a slope of 9.12 +-0.29 which agrees well with the estimate of 8.99 ±0.33 based on a simple Rayleigh fractionation model. The unique signature of a higher deuterium excess (d) of the ‘Western Disturbance’ is preserved in these samples. An altitude effect of -0.9 per mil/km is observed in the δ18O of Indus waters. At a lower altitude (Beas) the altitude effect is almost double, indicating that the altitude effect decreases with elevation in this region.  相似文献   
510.
SEISMOLOGICAL EVIDENCES FOR THE MULTIPLE INCOMPLETE CRUSTAL SUBDUCTIONS IN HIMALAYA AND SOUTHERN TIBET  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号