首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   53篇
  国内免费   93篇
测绘学   26篇
大气科学   5篇
地球物理   90篇
地质学   345篇
海洋学   12篇
天文学   5篇
综合类   41篇
自然地理   45篇
  2024年   7篇
  2023年   4篇
  2022年   10篇
  2021年   15篇
  2020年   17篇
  2019年   22篇
  2018年   18篇
  2017年   24篇
  2016年   20篇
  2015年   12篇
  2014年   17篇
  2013年   33篇
  2012年   16篇
  2011年   18篇
  2010年   15篇
  2009年   31篇
  2008年   31篇
  2007年   28篇
  2006年   36篇
  2005年   23篇
  2004年   21篇
  2003年   15篇
  2002年   16篇
  2001年   11篇
  2000年   41篇
  1999年   8篇
  1998年   6篇
  1997年   10篇
  1996年   10篇
  1995年   5篇
  1994年   9篇
  1993年   4篇
  1992年   1篇
  1991年   6篇
  1989年   6篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有569条查询结果,搜索用时 15 毫秒
491.
The Main Central Thrust (MCT) is a tectono-metamorphic boundary between the Higher Himalayan crystallines (HHC) and Lesser Himalayan metasediments (LHS), reactivated in the Tertiary, but which had already formed as a collisional boundary in the Early Paleozoic. To investigate the nature of the MCT, we analyzed whole-rock Nd isotopic ratios of rocks from the MCT and surrounding zones in the Taplejung–Ilam area of far-eastern Nepal, Annapurna–Galyang area of central Nepal, and Maikot–Barekot area of western Nepal. We define the MCT zone as a ductile–brittle shear zone between the upper MCT (UMCT) and lower MCT (LMCT). The protoliths of the MCT zone may provide critical constraints on the tectonic evolution of the Himalaya. The LHS is lithostratigraphically divided into the upper and lower units. In the Taplejung–Ilam area, different lithologic units and their εNd (0) values are as follows; HHC (− 10.0 to − 18.1), MCT zone (− 18.5 to − 26.2), upper LHS unit (− 17.2), and lower LHS unit (− 22.0 to − 26.9). There is a distinct gap in the εNd (0) values across the UMCT except for the southern frontal edge of the Ilam nappe. In the Annapurna–Galyang and Maikot–Barekot areas, different lithologic units and their εNd (0) values are as follows; HHC (− 13.9 to − 17.7), MCT zone (− 23.8 to − 26.2 except for an outlier of − 12.4), upper LHS unit (− 15.6 to − 26.8), and lower LHS unit (− 24.9 to − 26.8). These isotopic data clearly distinguish the lower LHS unit from the HHC. Combining these data with the previously published data, the lowest εNd (0) value in the HHC is − 19.9. We regard rocks with εNd (0) values below − 20.0 as the LHS. In contrast, rocks with those above − 19.9 are not always the HHC, and some parts of them may belong to the LHS due to the overlapping Nd isotopic ratio between the HHC and LHS. Most rocks of the MCT zone have Nd isotopic ratios similar to those of the LHS, but very different from those of the HHC. The spatial patterns in the distribution of εNd (0) value around the UMCT suggest no substantial structural mixing of the HHC and LHS during the UMCT activities in the Tertiary. A discontinuity in the spatial distribution of εNd (0) values is laterally continuous along the UMCT throughout the Himalayas. These facts support the theory that the UMCT was originally a material boundary between the HHC and LHS, suggesting the MCT zone was mainly developed with undertaking a role of sliding planes during overthrusting of the HHC in the Tertiary.  相似文献   
492.
IS THE GRENVILLE PROVINCE AN ANCIENT ANALOGUE OF THE HIMALAYAN BELT?1 All埁greCJ ,2 4others.StructureandevolutionoftheHimalayan Tibetorogenicbelt[J].Nature ,1984,30 7:17~ 2 2 . 2 BurgJP ,DavyP ,MartinodJ .Shorteningofanaloguemodelsofthecontinentallithosphere :Newhypothesisforthefor mationoftheTibetanplateau[J].Tectonics ,1994,13:475~ 483. 3 BurtmanVS ,MolnarP .GeologicalandgeophysicalevidencefordeepsubductionofcontinentalcrustbeneaththePamir[C]…  相似文献   
493.
Two hundred and forty water samples (in four seasons) and seventeen sediment samples have been analyzed to monitor the natural and anthropogenic influences on the water and sediment chemistry of the Dal Lake, Kashmir Himalaya. The scatter diagrams [(Ca+Mg)/total cations (TZ+), (Ca+Mg)/HCO3, (Ca+Mg)/(HCO3+SO4), (Na+K)/TZ+; (Ca+Mg)/(Na+K)] and the geological map of the study area suggest predominance of carbonate and silicate weathering. Lower pH and high total dissolved solids, electrical conductivity and values in the Gagribal basin and in some patches of other basins reflect anthropogenic inputs in the form of sewage from surrounding population, houseboats, hotels, etc. The Dal Lake is characterized by high chemical index of alteration (CIA: 87–95), reflecting extreme weathering of the catchment area. Relative to the average carbonates, the lakebed sediments are enriched in Al, Ti, Zn, Cu and Co and depleted in Ni and Mn. Compared to the post-Archean Shale the sediments have higher Al, Zn and Cu contents and lower Ni and Co. There are distinct positive anomalies of Al, Mn, Zn and Cu and negative anomalies of Ni and Pb with respect to the upper continental crust. Geoaccumulation index (I geo) and the US Environmental Protection Agency sediment quality standards indicate that the Gagribal basin and some patches of the Nagin basin are polluted with respect to Zn, Cu and Pb. These data suggest that the Dal Lake is characterized by differential natural and anthropogenic influences.  相似文献   
494.
The Chikkim Formation as exposed in the Tethyan Himalaya (India) has been studied at its type locality, using planktonic foraminifera for a detailed biostratigraphic elaboration. Divided into two members, the Lower and Upper Chikkim members, this formation ranges in age from Albian to early Maastrichtian(?), and reaches a maximum thickness of 150 m. Examination of thin sections has yielded 34 species of foraminifera in five genus-level assemblages. The Lower Chikkim Member is about 55 m thick; its basal portion is of Albian age based on the presence of Biticinella breggiensis and Planomalina buxtorfi. At 26 m above the base, Whiteinella archaeocretacaea documents OAE 2 (Oceanic Anoxic Event 2), and thus the Cenomanian/Turonian boundary in this section. The carbonate sequence is capped by a Santonian-age hardground with iron oxide crusts and bioturbation. Macrofossils, including belemnites (at the base) and irregular echinoids (upper part), are present. The basal carbonaceous marls of the Upper Chikkim Member yield both large (benthic) rotaliid as well as planktonic foraminifera (Globotruncanita elevata, Gl. stuartiformis, Gl. stuarti, Gansserina gansseri and others), indicating a Campanian age. The co-occurrence of Gl. elevata and G. gansseri in a single thin section results either from condensation or reworking in the basal part of the Upper Chikkim Member. Late Cretaceous index foraminifera such as Gl. elevata document deposition within the Tethyan Realm. The original thickness of the Upper Chikkim Member is uncertain, but would have been around 100 m; the unit appears markedly reduced through weathering at a height of about 5000 m above sea level. Equivalent sediments are exposed in the Zanskar area to the northwest, and in Nepal and Tibet. Cretaceous Oceanic Red Beds (CORBs) are probably missing due to the proximality of these pelagic settings.  相似文献   
495.
Zhaxikang is one large Sb–Pb–Zn–Ag deposit located in the North Himalaya of southern Tibet. To date, the genesis of this deposit still remains controversial. Here, we present new pyrite Fe and sphalerite Zn isotopic data for the first three stages of mineralization, Fe–Zn isotopic data for Mn–Fe carbonate that formed during the first two stages of mineralization, and Zn isotopic data for the slate wall rocks of the Jurassic Ridang Formation to discuss the genesis of the Zhaxikang deposit. The overall δ56Fe and δ66Zn values range from −0.80‰ to 0.43‰ and from −0.03‰ to 0.38‰, respectively. The δ56Fe values of Mn–Fe carbonates are lighter than those of associated pyrite in six mineral pairs, indicating that the iron carbonates are preferentially enriched in light Fe isotopes relative to pyrite. The sphalerite has lighter δ66Zn values than associated Mn–Fe carbonates in three mineral pairs.The δ56Fe values of pyrite that formed during the first three stages of mineralization gradually increase from stage 1 (−0.33‰ to −0.09‰) through stage 2 (−0.30‰ to 0.19‰) to stage 3 (0.16‰–0.43‰). In comparison, the sphalerite that formed during these stages has δ66Zn values that gradually decrease from stage 1 (0.16‰–0.35‰) through stage 2 (0.09‰–0.23‰) to stage 3 (−0.03‰ to 0.22‰). These data, in conjunction with the observations of hand specimens and thin sections, suggest that the deposit was overprinted by a second pulse of mineralization. This overprint would account for these Fe–Zn isotopic variations as well as the kinetic Rayleigh fractionation that occurred during mineralization. The temporally increasing δ56Fe and decreasing δ66Zn values recorded in the deposit are also coincident with an increase in alteration, again supporting the existence of two pulses of mineralization. The δ56Fe values of the first pulse of ore-forming fluid were calculated using theoretical equations, yielding values of −0.54‰ to −0.34‰ that overlap with those of submarine hydrothermal solutions (−1‰ to 0‰). However, the δ56Fe values of the stage 3 pyrite are heavier than those of typical submarine hydrothermal solutions, which suggests that the second pulse of mineralization was probably derived from a magmatic hydrothermal fluid. In addition, the second pulse of ore-forming fluid has brought some Fe and taken away parts of Zn, which results the lighter δ66Zn values of sphalerite and heavier δ56Fe values of pyrite from the second pulse of mineralization. Overall, the Zhaxikang deposit records two pulses of mineralization, and the overprint by the second pulse of mineralization causes the lighter δ66Zn values and heavier δ56Fe values of modified samples.  相似文献   
496.
Abstract

— Stratigraphic and petrographic analysis of the Cretaceous to Eocene Tibetan sedimentary succession has allowed us to reinterpret in detail the sequence of events which led to closure of Neotethys and continental collision in the NW Himalaya.

During the Early Cretaceous, the Indian passive margin recorded basaltic magmaüc activity. Albian volcanic arenites, probably related to a major extensional tectonic event, are unconformably overlain by an Upper Cretaceous to Paleocene carbonate sequence, with a major quartzarenite episode triggered by the global eustatic sea-level fall at the Cretaceous/Tertiary boundary. At the same time, Neotethyan oceanic crust was being subducted beneath Asia, as testified by calc-alkalic volcanism and forearc basin sedimentation in the Transhimalayan belt.

Onset of collision and obduction of the Asian accretionary wedge onto the Indian continental rise was recorded by shoaling of the outer shelf at the Paleocene/Eocene boundary, related to flexural uplift of the passive margin. A few My later, foreland basin volcanic arenites derived from the uplifted Asian subduction complex onlapped onto the Indian continental terrace. All along the Himalaya, marine facies were rapidly replaced by continental redbeds in collisional basins on both sides of the ophiolitic suture. Next, foreland basin sedimentation was interrupted by fold-thrust deformation and final ophiolite emplacement.

The observed sequence of events compares favourably with theoretical models of rifted margin to overthrust belt transition and shows that initial phases of continental collision and obduction were completed within 10 to 15 My, with formation of a proto-Himalayan chain by the end of the middle Eocene.  相似文献   
497.
When density fluctuations of scalars such as CO2 are measured with open-path gas analyzers, the measured vertical turbulent flux must be adjusted to take into account fluctuations induced by ‘external effects’ such as temperature and water vapour. These adjustments are needed to separate the effects of surface fluxes responsible for ‘natural’ fluctuations in CO2 concentration from these external effects. Analogous to vertical fluxes, simplified expressions for separating the ‘external effects’ from higher-order scalar density turbulence statistics are derived. The level of complexity in terms of input to these expressions are analogous to that of the Webb–Pearman–Leuning (WPL), and are shown to be consistent with the conservation of dry air. It is demonstrated that both higher-order turbulent moments such as the scalar variances, the mixed velocity-scalar covariances, and the two-scalar covariance require significant adjustments due to ‘external effects’. The impact of these adjustments on the turbulent CO2 spectra, probability density function, and dimensionless similarity functions derived from flux-variance relationships are also discussed.  相似文献   
498.
In high-altitude areas, snow cover plays a significant role in mountainous hydrology. Satluj, which is a snow-fed river, is a part of the Indus River system in the western Himalayas. Snow cover area (SCA) variability in this river basin affects the spatio-temporal flow availability and avalanche events. Keeping this in mind, the present study focuses on SCA variability and its relationship with various topographical features such as elevation, slope and aspect. The study has been carried out in the upper part of the Satluj River Basin on the basis of MODIS Terra (MOD10A2) data from 2001 to 2014. It has been noticed that the average annual SCA in this part of the Satluj River Basin varies from 44 to 56% with an average of about 48% of the total basin area of 16, 650 km2. Further, snow accumulation and depletion curves have been suggested for assessing the SCA in the study area.  相似文献   
499.
汪志明 《测绘工程》2010,19(5):78-80
教材质量的好坏,关系到人才培养质量。介绍学院在培养测绘工程专业创新人才过程中,针对教材的建设所采取的措施和做法,对培养测绘工程专业创新人才有一定的参考作用。  相似文献   
500.
This study uses 238U–234U–230Th disequilibria in river sediments in order to constrain the transfer times of sediments in alluvial plains of rivers from Himalaya and the Gangetic plain. From the observed distributions we infer sediment transfer times of about 100 ka in the Gangetic plain for rivers taking their source in the Himalayan chain, and longer transfer of about 160–250 ka for foothill-fed rivers. This difference is probably related to the difference in the sediment transport dynamics of these two types of rivers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号