全文获取类型
收费全文 | 517篇 |
免费 | 105篇 |
国内免费 | 175篇 |
专业分类
测绘学 | 12篇 |
大气科学 | 100篇 |
地球物理 | 130篇 |
地质学 | 488篇 |
海洋学 | 17篇 |
天文学 | 3篇 |
综合类 | 18篇 |
自然地理 | 29篇 |
出版年
2024年 | 6篇 |
2023年 | 8篇 |
2022年 | 15篇 |
2021年 | 16篇 |
2020年 | 16篇 |
2019年 | 30篇 |
2018年 | 32篇 |
2017年 | 32篇 |
2016年 | 32篇 |
2015年 | 14篇 |
2014年 | 24篇 |
2013年 | 49篇 |
2012年 | 48篇 |
2011年 | 36篇 |
2010年 | 21篇 |
2009年 | 30篇 |
2008年 | 33篇 |
2007年 | 35篇 |
2006年 | 44篇 |
2005年 | 31篇 |
2004年 | 28篇 |
2003年 | 16篇 |
2002年 | 27篇 |
2001年 | 18篇 |
2000年 | 13篇 |
1999年 | 18篇 |
1998年 | 12篇 |
1997年 | 20篇 |
1996年 | 10篇 |
1995年 | 15篇 |
1994年 | 5篇 |
1993年 | 12篇 |
1992年 | 11篇 |
1991年 | 7篇 |
1990年 | 12篇 |
1989年 | 5篇 |
1988年 | 6篇 |
1987年 | 4篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1983年 | 2篇 |
1978年 | 1篇 |
排序方式: 共有797条查询结果,搜索用时 5 毫秒
111.
Georges Aouad Valérie Geoffroy Jean-Marie Meyer Jean-Louis Crovisier Denis Damidot Peter Stille 《Comptes Rendus Geoscience》2005,337(15):1340-1347
The influence of microorganisms on mineral alteration is not easy to determine in environmental conditions, because of the difficulty to raise for comparison purposes an identical but abiotic system. Another problem in this context is the choice of reliable tracers to evaluate the alteration rate of materials during in vitro experiments. To face such difficulties, we elaborated a defined medium allowing both the growth of Pseudomonas aeruginosa and a precise measurement of the elements solubilized from the minerals. Thanks to this medium, we were able to quantitatively determine the amounts of major elements solubilized from the materials in the presence of bacterial growth, compared to a sterile system. Moreover, the analysis by ICP-MS of trace elements was possible after a chromatographic treatment, which selectively eliminated 99% of the sodium content of the medium. To cite this article: G. Aouad et al., C. R. Geoscience 337 (2005). 相似文献
112.
山东沂水杂岩主要由高角闪岩相至麻粒岩相变质的变基性岩和(紫苏)花岗岩岩体组成.本文主要研究了三个含紫苏辉石的黑云斜长角闪岩(YS06-19、YS06-41和YS06-29),三个含石榴子石的角闪二辉斜长麻粒岩(YS06-40、YS06-45、YS06-49),一个含尖晶石和石榴子石角闪二辉麻粒岩(YS06-31)和两个英灵山花岗片麻岩样品(YS06-30和YS06-48)的岩石化学和锆石Hf同位素特征.结果认为,(1)含紫苏辉石的黑云斜长角闪岩和含石榴子石的角闪二辉斜长麻粒岩对Sr、K、Rb、Ba、Ce、Th等大离子亲石元素和轻稀土元素的富集程度不同,指示了其原岩经历了不同程度的部分熔融;(2)认为英灵山花岗片麻岩是由来自于亏损地幔的基性岩部分熔融产生,这一观点同沈其韩等(2000)认识一致;(3)所研究的变基性岩的锆石Hf亏损地幔模式年龄均小于英灵山花岗片麻岩Hf亏损地幔模式年龄,指示了该变基性岩可能不是英灵山花岗片麻岩的母岩,沂水地区应该存在更古老的变基性岩石,也可能反映了这两类岩石对Hf同位素体系的保存能力不同;(4)该地区地壳生长在30亿年左右启动,大规模的地壳生长出现在2530~2740Ma. 相似文献
113.
The La Peña alkaline complex (LPC) of Miocene age (18–19 Ma) lies on the eastern front of the Precordillera (32°41ʹ34ʺS, 68°59ʹ48″W, 1400–2900 m a.s.l.), 30 km northwest of Mendoza city, Argentina. It is a subcircular massif of 19 km2 and 5 km in diameter, intruded in the metasedimentary sequence of the Villavicencio Formation of Silurian-Devonian age. It is the result of integration of multiple pulses derived from one or more deep magma chambers, which form a suite of silicate rocks grouped into: a clinopyroxenite body, a central syenite facies with a large breccia zone at the contact with the clinopyroxenite, bodies of malignite, trachyte and syenite porphyry necks, and a system of radial and annular dikes of different compositions. Its subcircular geometry and dike system distribution are frequent features of intraplate plutons or plutons emplaced in post-orogenic settings. These morphostructural features characterize numerous alkaline complexes worldwide and denote the importance of magmatic pressures that cause doming with radial and annular fracturing, in a brittle country rock. However, in the LPC, the attitude of the internal fabric of plutonic and subvolcanic units and the preferential layout of dikes match the NW–SE extensional fractures widely distributed in the host rock. This feature indicates a strong tectonic control linked to the structure that facilitate space for emplacement, corresponding to the brittle shear zone parallel to the N–S stratigraphy of the country rock. Shearing produced a system of discontinuities, with a K fractal fracture pattern, given by the combination of Riedel (R), anti-Riedel (R′), (P) and extensional (T) fracture systems, responsible for the control of melt migration by the opening of various fracture branches, but particularly through the NW–SE (T) fractures. Five different pulses would have ascent, (1) an initial one from which cumulate clinopyroxenite was formed, (2) a phase of mafic composition represented by dikes cross-cutting the clinopyroxenite, (3) a malignite facies that causes a small breccia in the clinopyroxenite, (4) a central syenite facies that develops breccias at the contact with the clinopyroxenite and, finally, (5) porphyry necks and a system of radial dikes intruding all units. At the moment of the emplacement different mechanisms would have acted, they summarized in: 1) opening of discontinuities synchronous to the magma circulation as the principal mechanism for formation of dikes and conduits; 2) stoping processes, that play an important role in the development of the breccia zone and enabling an efficient transference of material during the emplacement of the syenitic magma and 3) shear-related deformation (regional stress), affected the internal fabric of the facies, causing intracrystalline deformation and submagmatic flow, which is very evident in the central syenite intrusive. The kinematic analysis of shear planes allows proposing that emplacement of the LPC took place in a transtensive regime, which would have occurred in the back-arc of the Andes orogen, during a long period spanning from Miocene to the present, of the compressive deformation responsible, westward and at the same latitude, for the development of the Aconcagua fold and thrust belt. 相似文献
114.
Jian ZHANG Guochun ZHAO LI Sanzhong Min SUN LIU Shuwen Xiaoping XIA Yanhong HE Department of Earth Sciences The University of Hong Kong Pokfulam Ro Hong Kong College of Marine Geosciences Ocean University of Chin Qingdao Shandong 《《地质学报》英文版》2006,80(6):886-898
1 Introduction The North China Craton (NCC) is considered to be the oldest and largest cratonic block in China. Recent studies to gain understanding of basement architecture of the NCC has led to its division into the Western and Eastern Blocks, separated by a N-S trending Paleoproterozoic Trans-North China Orogen (TNCO) (Fig. 1; Zhao et al., 1998, 1999a, 2000a, 2001a; Wilde et al., 2002). Although there is now abroad consensus that the final assembly of the NCC was completed by th… 相似文献
115.
阜平杂岩年龄及其地质意义:兼论前寒武高级变质地体的定年问题 总被引:22,自引:7,他引:22
本文通过对比锆石TIMS(热电离质谱法),SHRIMP(高灵敏度离子探针)及ICPMS-LP(等离子体质谱-激光探针)分析方法对阜平杂岩中主要岩石获得的年龄结果,讨论了阜平杂岩中几种主要岩石的形成时代及其地质意义。研究结果表明阜平杂岩是由不同时代、不同成因的各种高级变质岩组成,其主体是2.51Ga的TTG片麻岩并包裹了少量2.7Ga的大陆残片。同时阜平地区还发育一期2.05Ga的岩浆活动。阜平杂岩中的湾子表壳岩可能沉积发育于2.5Ga和2.1Ga之间。本文还通过比较三种锆石同位素定年方法的特点,进而讨论了几种方法在高级变质地体定年上的可行性,特别强调了锆石内部结构、化学组成等成因矿物学方面的研究对锆石年代学的主要意义。 相似文献
116.
Taus R. C. Jrgensen Douglas K. Tinkham C. Michael Lesher 《Journal of Metamorphic Geology》2019,37(2):271-313
Low‐pressure and high‐temperature (LP–HT) metamorphism of basaltic rocks, which occurs globally and throughout geological time, is rarely constrained by forward phase equilibrium modelling, yet such calculations provide valuable supplementary thermometric information and constraints on anatexis that are not possible to obtain from conventional thermometry. Metabasalts along the southern margin of the Sudbury Igneous Complex (SIC) record evidence of high‐grade contact metamorphism involving partial melting and melt segregation. Peak metamorphic temperatures reached at least ~925°C at ~1–3 kbar near the SIC contact. Preservation of the peak mineral assemblage indicates that most of the generated melt escaped from these rocks leaving a residuum characterized by a plagioclase–orthopyroxene–clinopyroxene–ilmenite‐magnetite±melt assemblage. Peak temperatures reached ~875°C up to 500 m from the SIC lower contact, which marks the transition to metabasalts that only experienced incipient partial melting without melt loss. Metabasalts ~500 to 750 m from the SIC contact are characterized by a similar two‐pyroxene mineral assemblage, but typically contain abundant hornblende that overgrew clino‐ and orthopyroxene along an isobaric cooling path. Metabasalts ~750 to 1,000 m from the SIC contact are characterized by a hornblende–plagioclase–quartz–ilmenite assemblage indicating temperatures up to ~680°C. Mass balance and phase equilibria calculations indicate that anatexis resulted in 10–20% melt generation in the inner ~500 m of the aureole, with even higher degrees of melting towards the contact. Comparison of multiple models, experiments, and natural samples indicates that modelling in the Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCFMASHTO) system results in the most reliable predictions for the temperature of the solidus. Incorporation of K2O in the most recent amphibole solution model now successfully predicts dehydration melting by the coexistence of high‐Ca amphibole and silicate melt at relatively low pressures (~1.5 kbar). However, inclusion of K2O as a system component results in prediction of the solidus at too low a temperature. Although there are discrepancies between modelling predictions and experimental results, this study demonstrates that the pseudosection approach to mafic rocks is an invaluable tool to constrain metamorphic processes at LP–HT conditions. 相似文献
117.
Reducing model complexity for explanation and prediction 总被引:1,自引:1,他引:1
Numerical models can be useful for explaining poorly understood phenomena or for reliable quantitative predictions. When modeling a multi-scale system, a ‘top-down’ approach—basing models on emergent variables and interactions, rather than explicitly on the much faster and smaller scale processes that give rise to them—facilitates both goals. Parameterizations representing emergent interactions range from highly simplified and abstracted to more quantitatively accurate. Empirically based large-scale parameterizations lead more reliably to accurate large-scale behavior than do parameterizations of much smaller scale processes. Conversely, purposefully simplified representations of model interactions can enhance a model's utility for explanation, clarifying the key feedbacks leading to an enigmatic behavior. For such potential insights to be relevant, the interactions in the model need to correspond to those in the ‘real’ system in some straightforward way. Such a correspondence usually holds for models constructed for predictive purposes, although this is not a requirement. The goals motivating a modeling endeavor help determine the most appropriate modeling strategies, as well as the most appropriate criteria for judging model usefulness. 相似文献
118.
119.
J. A. Proenza F. Ortega-Gutirrez A. Camprubí J. Tritlla M. Elías-Herrera M. Reyes-Salas 《Journal of South American Earth Sciences》2004,16(8):129
The serpentinites and associated chromitite bodies in Tehuitzingo (Acatlán Complex, southern Mexico) are in close relationship with eclogitic rocks enclosed within a metasedimentary sequence, suggesting that the serpentinites, chromitites and eclogitic rocks underwent a common metamorphic history.Primary chromites from the chromitite bodies at Tehuitzingo are of refractory-grade (Al-rich) and have a chemical composition similar to that expected to be found in an ophiolitic environment. The chromite grains in chromitites and serpentinites are systematically altered to ‘ferritchromite’. The alteration trend is usually characterized by a decrease in the Al, Mg and Cr contents coupled by an increase in Fe3+ and Fe2+.The Tehutizingo chromitites have low Platinum Group Elements (PGE) contents, ranging from 102 to 303 ppb. The chondrite-normalized PGE patterns are characterized by an enrichment in the Ir-subgroup elements (IPGE=Os, Ir, Ru) relative to the Pd-subgroup elements (PPGE=Rh, Pt, Pd). In addition, all chromitite samples display a negative slope from Ru to Pd [(Os+Ir+Ru)/(Pt+Pd)=4.78−14.13]. These patterns, coupled with absolute PGE abundances, are typical of ophiolitic chromitites elsewhere. Moreover, all the analyzed samples exhibit chondrite-normalized PGE patterns similar to those found for non-metamorphosed ophiolitic chromitites. Thus, the PGE distribution patterns found in the Tehuitzingo chromitites have not been significantly affected by any subsequent Paleozoic high-pressure (eclogite facies) metamorphic event.The chondrite-normalized PGE patterns of the enclosing serpentinites also indicate that the PGE distribution in the residual mantle peridotites exposed in Tehuitzingo was unaffected by high-pressure metamorphism, or subsequent hydrothermal alteration since the serpentinites show a similar pattern to that of partially serpentinized peridotites present in mantle sequences of non-metamorphosed ophiolites.Our main conclusion is that the chromitites and serpentinites from Tehuizingo experienced no significant redistribution (or concentration) of PGE during the serpentinization process or the high-pressure metamorphic path, or during subsequent alteration processes. If any PGE mobilization occurred, it was restricted to individual chromitite bodies without changing the bulk-rock PGE composition.Our data suggest that the Tehuitzingo serpentinites and associated chromitites are a fragment of oceanic lithosphere formed in an arc/back-arc environment, and represent an ophiolitic mantle sequence from a supra-subduction zone, the chemical composition of which remained essentially unchanged during the alteration and metamorphic events that affected the Acatlán Complex. 相似文献
120.
Allen P. Nutman Vickie C. Bennett Clark R. L. Friend Kenji Horie Hiroshi Hidaka 《Contributions to Mineralogy and Petrology》2007,154(4):385-408
The Eoarchaean (>3,600 Ma) Itsaq Gneiss Complex of southern West Greenland is dominated by polyphase orthogneisses with a
complex Archaean tectonothermal history. Some of the orthogneisses have c. 3,850 Ma zircons, and they vary from rare single
phase metatonalites to more common complexly banded migmatites. This is due to heterogeneous strain, in situ anatexis and
granitic veining superimposed during younger tectonothermal events. In the single-phase tonalites with c. 3,850 Ma zircon,
oscillatory-zoned prismatic zircon is all 3,850 Ma old, but shows patchy ancient loss of radiogenic Pb. SHRIMP spot analyses
and laser ablation ICP-MS depth profiling show that thin (usually < 10 μm) younger (3,660–3,590 Ma and Neoarchaean) shells
of lower Th/U metamorphic zircon are present on these 3,850 Ma zircons. Several samples with this simple zircon population
occur on islands near Akilia. In contrast, migmatites usually contain more complex zircon populations, with often more than
one generation of igneous zircon present. Additional zircon dating of banded gneisses across the Complex shows that samples
with c. 3,850 Ma igneous zircon are not just a phenomenon restricted to Akilia and adjacent islands. For example, migmatites
from Itilleq (c. 65 km from Akilia) contain variable amounts of oscillatory-zoned 3,850 Ma and 3,650 Ma zircon, interpreted,
respectively, as the rock age and the time of crustal melting under Eoarchaean metamorphism. With only 110–140 ppm Zr in the
tonalites and likely magmatic temperatures of >850°C, zircon solubility–melt composition relationships show that they were
only one-third saturated in zircon. Any zircon entrained in the precursor magmas would thus have been highly soluble. Combined
with the cathodoluminesence imaging, this demonstrates that the c. 3,850 Ma oscillatory zoned zircon crystallised out of the
melt and hence gives a magmatic age. Thus the rare well-preserved tonalites and palaeosome in migmatites testify that c. 3,850 Ma
quartzo–feldspathic rocks are a widespread (but probably minor) component in the Itsaq Gneiss Complex. C. 3,850 Ma zircon
with negative Eu anomalies (showing growth in felsic systems) also occurs as detrital grains in rare c. 3,800 Ma metaquartzites
and as inherited grains in some 3,660 Ma granites (sensu stricto). These demonstrate that still more c. 3,850 Ma rocks were present, but were recycled into Eoarchaean sediments and crustally
derived granites. The major and trace element characteristics (e.g. LREE enrichment, HREE depletion, low MgO) of the best-preserved
c. 3,850 Ma rocks are typical of Archaean TTG suites, and thus argue for crust formation processes involving important contributions
from melting of hydrated mafic crust to the earliest Archaean. Five c. 3,850 Ma tonalites were selected as the best preserved
on the basis of field criteria and zircon petrology. Four of these samples have overlapping initial ɛNd (3,850 Ma) values from +2.9 to +3.6± 0.5, with the fourth having a slightly lower value of +0.6. These data provide additional
evidence for a markedly LREE-depleted early terrestrial mantle reservoir. The role of c. 3,850 Ma crust should be considered
in interpreting isotope signatures of the younger (3,800–3,600 Ma) rocks of the Itsaq Gneiss Complex.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献