了解全新世的温度变化能为理解目前日益突出的全球变暖、评估未来全球气候变化给出重要的参考。在这项研究中,基于长江下游南漪湖沉积岩芯深度为0~450cm中161个样品的brGDGTs代用指标,对过去12.0ka的大气温度进行重建,以进一步深化对全新世温度变化的理解。发现湖泊周边土壤与湖泊沉积物brGDGTs分子组成存在显著差异:土壤以brGDGTs-Ⅰ系列为主,占到总比重的80%以上,计算得的MBT'5ME平均值为0.81;湖泊表层和柱状沉积物的brGDGTs分子组成更相似,其brGDGT-Ⅰ和brGDGT-Ⅱ分别为43%、48%和62%、35%,对应的MBT'5ME平均值分别为0.44和0.62,因此认为湖泊沉积物brGDGTs主要为自生来源,进而选用基于MBT'5ME的湖泊温度经验计算式进行古温度的重建。重建的南漪湖年均大气温度自12.0 ka B.P.以来变化范围为13.8~22.4℃,根据变化趋势,可以分为4个阶段:①阶段,早全新世(约12.0~8.2 ka B.P.),温度变化范围为15.1~20.6℃,属低温阶段;②阶段,中全新世(约8.2~6.0 ka B.P.),温度为16.8~20.0℃,为稳定高温阶段;③阶段,中晚全新世(约6.0~3.0 ka B.P.),温度为13.8~19.4℃,快速降温阶段;④阶段,晚全新世(约3.0 ka B.P.以来),温度在17.4~22.4℃,快速升温阶段。通过对比其他古气候记录,可以得到以下结论:长江下游地区在约12.0~8.2 ka B.P.时期温度变化主要受高纬度冰川残留的影响,为低温时期;在约8.2~6.0 ka B.P.时期的温度变化主要受到较强的太阳辐射量控制,属稳定高温期,对应全新世大暖期;约6.0 ka B.P.后,温度受到6.0~3.0 ka B.P.中低纬度冷事件以及上升温室气体辐射强迫共同影响,呈现先降后升的"V"型变化趋势。本研究表明长江下游地区自12.0 ka B.P.以来温度变化主要受全球温度变化控制,自晚全新世以来温室气体辐射强迫是影响其温度变化的主要因素。
The relatively rapid recession of glaciers in the Himalayas and formation of moraine dammed glacial lakes(MDGLs) in the recent past have increased the risk of glacier lake outburst floods(GLOF) in the countries of Nepal and Bhutan and in the mountainous territory of Sikkim in India. As a product of climate change and global warming, such a risk has not only raised the level of threats to the habitation and infrastructure of the region, but has also contributed to the worsening of the balance of the unique ecosystem that exists in this domain that sustains several of the highest mountain peaks of the world. This study attempts to present an up to date mapping of the MDGLs in the central and eastern Himalayan regions using remote sensing data, with an objective to analyse their surface area variations with time from 1990 through 2015, disaggregated over six episodes. The study also includes the evaluation for susceptibility of MDGLs to GLOF with the least criteria decision analysis(LCDA). Forty two major MDGLs, each having a lake surface area greater than 0.2 km2, that were identified in the Himalayan ranges of Nepal, Bhutan, and Sikkim, have been categorized according to their surface area expansion rates in space and time. The lakes have been identified as located within the elevation range of 3800 m and6800 m above mean sea level(a msl). With a total surface area of 37.9 km2, these MDGLs as a whole were observed to have expanded by an astonishing 43.6% in area over the 25 year period of this study. A factor is introduced to numerically sort the lakes in terms of their relative yearly expansion rates, based on their interpretation of their surface area extents from satellite imageries. Verification of predicted GLOF events in the past using this factor with the limited field data as reported in literature indicates that the present analysis may be considered a sufficiently reliable and rapid technique for assessing the potential bursting susceptibility of the MDGLs. The analysis also indicates that, as of now, there are eight MDGLs in the region which appear to be in highly vulnerable states and have high chances in causing potential GLOF events anytime in the recent future. 相似文献
This paper reports a first estimate of the Holocene lake sediment carbon pool in Alberta, Canada. The organic matter content of lake sediment does not appear to depend strongly on lake size or other limnological parameters, allowing a simple first estimate in which we assume all Alberta lake sediment to have the same organic matter content. Alberta lake sediments sequester about 15 g C m-2 yr-1, for a provincial total of 0.23 Tg C yr-1, or 2.3 Pg C over the Holocene. Alberta lakes may represent as much as 1/1700 of total global, annual permanent carbon sequestration. 相似文献
Large dams and reservoirs alter not only the natural flow regimes of streams and rivers but also their flooding cycles and flood magnitudes. Although the effect of dams and reservoirs has been reported for some vulnerable locations, the understanding of the inner-basin variation with respect to the effects remains limited. In this study, we analyse the Three Gorges Dam (TGD) built on the Changjiang mainstream (Yangtze River) to investigate the dam effect variations in the system of interconnected water bodies located downstream. We investigated the effect of flow alterations along the downstream river network using discharge time series at different gauging stations. The river–lake interactions (referring to the interactions between the Changjiang mainstream and its tributary lakes i.e. the Dongting and Poyang lakes) and their roles in modifying the TGD effect intensity were also investigated in the large-scale river–lake system. The results show that the water storage of the tributary lakes decreased after the activation of the TGD. Severe droughts occurred in the lakes, weakening their ability to recharge the Changjiang mainstream. As a consequence, the effect of the TGD on the Changjiang flow increase during the dry season diminished quickly downstream of the dam, whereas its impact on the flow decrease during the wet season gradually exacerbated along the mainstream, especially at sites located downstream of the lake outlets. Therefore, when assessing dam-induced hydrological changes, special attention should be paid to the changes in the storage of tributary lakes and the associated effects in the mainstream. This is of high importance for managing the water resource trade-offs between different water bodies in dam-affected riverine systems. 相似文献
Sediment diatom and chemical analyses of cores from three poorly buffered extra-glacial lakes on the northeastern margin of the Canadian Shield (Cumberland Peninsula, Baffin Island) record interactions between aquatic and terrestrial spheres that were influenced by late Quaternary climatic conditions. Although differences exist between each of the lakes, notably with regards to the intensity of pre-Holocene catchment erosion and the timing of the onset of organic sedimentation, an underlying pattern of lake ontogeny, common to all three lakes, is identified. Although intensified watershed erosion characterized the Late Wisconsinan and Neoglacial cold periods, the lakes nonetheless remained viable ecosystems at these times. Sudden catchment stabilization during the late-glacial to earliest Holocene is associated with incipient organic sedimentation. Lake-water pH increased at this time, likely in response both longer base cation residence times as lake flushing rates decreased, and enhanced alkalinity production from sediment biogeochemical reactions. Subsequently, as the catchments remained stable during the productive early Holocene (c.9–7 ka BP), then gradually received a renewed increase of minerogenic sedimentation, the breakdown of sources of lake alkalinity resulted in natural acidification. Burial of cation-rich mineral sediments and the loss of permanent sedimentary sinks for the products of microbial reduction likely impeded within-lake alkalinity production, and catchment-derived base cations appeared ineffective in curtailing pH declines. The general nature of the Holocene development of these lakes is similar to that observed elsewhere on crystalline terrains, following deglaciation. Our data therefore suggest that catchment glaciation is not a necessary precursor for models of lake development characterized by initial base cation enrichment and subsequent gradual acidification. 相似文献