首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1785篇
  免费   266篇
  国内免费   1026篇
测绘学   9篇
大气科学   14篇
地球物理   290篇
地质学   2524篇
海洋学   145篇
天文学   8篇
综合类   61篇
自然地理   26篇
  2024年   18篇
  2023年   39篇
  2022年   46篇
  2021年   38篇
  2020年   59篇
  2019年   79篇
  2018年   74篇
  2017年   127篇
  2016年   114篇
  2015年   132篇
  2014年   130篇
  2013年   106篇
  2012年   123篇
  2011年   165篇
  2010年   119篇
  2009年   173篇
  2008年   143篇
  2007年   177篇
  2006年   169篇
  2005年   106篇
  2004年   118篇
  2003年   106篇
  2002年   83篇
  2001年   97篇
  2000年   89篇
  1999年   56篇
  1998年   75篇
  1997年   53篇
  1996年   52篇
  1995年   46篇
  1994年   33篇
  1993年   24篇
  1992年   26篇
  1991年   31篇
  1990年   11篇
  1989年   11篇
  1988年   5篇
  1987年   7篇
  1986年   7篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1954年   3篇
排序方式: 共有3077条查询结果,搜索用时 15 毫秒
171.
柴达木盆地北缘冷湖七号构造油气成藏过程与模式   总被引:7,自引:2,他引:7  
本文在对冷湖七号油气成藏条件综合分析的基础上,依据构造发育史与烃源岩生、排烃史,结合流体包裹体均一温度,分析了冷湖七号构造油气藏形成期次和过程,总结了东、西2个构造高点的油气成藏模式。研究结果表明:①冷七1井N12层包裹体主要为含烃盐水包裹体和气态烃有机包裹体,其均一温度明显分为60~70℃和110~130℃两个峰值区,对应地质时间分别为N21—N22时期和N2末—现今。结合源岩生、排烃史和构造演化史分析表明N12—N22时期为冷湖七号油气成藏的主要时期;②冷湖七号东高点N21气藏形成机理与模式为:断控同生隆起—单源供烃—不整合、断裂输导—浮力驱动—次生型断裂遮挡油气成藏模式;西高点E3油藏形成机理与模式为:同生隆起—双源供烃—不整合、断裂输导—浮力驱动—残留型原生油藏成藏模式。  相似文献   
172.
Abstract: Synchrotron X-ray fluorescence analyses on individual hypersaline fluid inclusions were tested to using synchrotron source at Tsukuba (KEK), Japan. The XRF instrumentation at KEK meets the purpose of fluid inclusion analysis, nondestructive, multi–element, ppm detection limits, with micro spatial resolution. In practice, however, the quantitative chemical analysis of fluid inclusion requires further considerable data accumulation. Semi-quantitative distribution of elements (mass number > 25) in single fluid inclusion was obtained.  相似文献   
173.
http://www.sciencedirect.com/science/article/pii/S1674987111000508   总被引:2,自引:0,他引:2  
This paper presents the results of a set of numerical models focussing on structural controls on hydrothermal mineralization.We first give an overview of natural phenomena of structurally-controlled ore formation and the background theory and mechanisms for such controls. We then provide the results of a group of simple 2D numerical models validated through comparison with Cu-vein structure observed near the Shilu Copper deposit(Yangchun,Guangdong Province, China) and finally a case study of 3D numerical modelling applied to the Hodgkinson Province in North Queensland(Australia).Two modelling approaches,discrete deformation modelling and continuum coupled deformation and fluid flow modelling,are involved.The 2D model-derived patterns are remarkably consistent with the Cu-vein structure from the Shilu Copper deposit,and show that both modelling approaches can realistically simulate the mechanical behaviours of shear and dilatant fractures.The continuum coupled deformation and fluid flow model indicates that pattern of the Cuveins near the Shilu deposit is the result of shear strain localization,development of dilation and fluid focussing into the dilatant fracture segments.The 3D case-study models(with deformation and fluid flow coupling) on the Hodgkinson Province generated a number of potential gold mineralization targets.  相似文献   
174.
The Rushan gold deposit in the Jiaodong Peninsula is currently the largest lode gold in China. Gold occurs mainly in pyrite- and polymetallic sulfide–quartz vein/veinlet stockworks. Fluid inclusions in the deposit are divided into three main types, namely CO2–H2O, H2O–CO2 ± CH4 and aqueous ones. Microthermometric data show that the pre-gold fluids were CO2-dominant (XCO2 up to 0.53), and the total homogenization temperatures fall in the range of 298377 °C. These fluids, modified by fluid/wallrock reactions, gradually evolved into fluids with less CO2 (XCO2 = 0.010.19) in the main ore-forming stage, and the total homogenization temperatures range from 170 to 324 °C. Hydrogen and oxygen stable isotope data suggest that ore-forming fluids were mixture of magmatic and meteoritic origin. Co-occurrence of gold and sulfides implies that gold was most likely transported in the form of gold–sulfide complexes. The wide distribution of CO2 inclusions means that the pH variation during gold transportation was controlled by CO2 buffering.  相似文献   
175.
The Sangdong scheelite–molybdenite deposit in northeast South Korea consists of strata-bound orebodies in intercalated carbonate-rich layers in the Cambrian Myobong slate formation. Among them, the M1 layer hosts the main orebody below which lie layers of F1–F4 host footwall orebodies. Each layer was first skarnized with the formation of a wollastonite + garnet + pyroxene assemblage hosting minor disseminated scheelite. The central parts of the layers were subsequently crosscut by two series of quartz veining events hosting minor scheelite and major scheelite–molybdenite ores, respectively. The former veins associate amphibole–magnetite (amphibole) alteration, whereas the latter veins host quartz–biotite–muscovite (mica) alteration. Deep quartz veins with molybdenite mineralization are hosted in the Cambrian Jangsan quartzite formation beneath the Myobong formation. In the Sunbawi area, which is in close proximity to the Sangdong deposit, quartz veins with scheelite mineralization are hosted in Precambrian metamorphic basement. Three muscovite 39Ar–40Ar ages between 86.6 ± 0.2 and 87.2 ± 0.3 Ma were obtained from M1 and F2 orebodies from the Sangdong deposit and Sunbawi quartz veins. The Upper Cretaceous age of the orebodies is concordant with the published ages of the hidden Sangdong granite, 87.5 ± 4.5 Ma. This strongly suggests that the intrusion is causative for the Sangdong W–Mo ores and Sunbawi veins.Fluid inclusions in the quartz veins from the M1 and F2 orebodies, the deep quartz-molybdenite veins, and the Sunbawi veins are commonly liquid-rich aqueous inclusions having bubble sizes of 10–30 vol%, apparent salinities of 2–8 wt% NaCl eqv., and homogenization temperatures of 180–350 °C. The densities of the aqueous inclusions are 0.70–0.94 g/cm3. No indication of fluid phase separation was observed in the vein. To constrain the formation depth in the Sangdong deposit, fluid isochores are combined with Ti–in–quartz geothermometry, which suggests that the M1 and F2 orebodies were formed at depths of 1–3 km and 5–6 km below the paleosurface, respectively. The similarity of the Cs (cesium) concentrations and Rb/Sr ratios in the fluid inclusions of the respective orebodies indicate an origin from source magmas having similar degrees of fractionation and enrichment of incompatible elements such as W and Mo. High S concentrations in the fluids and possibly organic C in the sedimentary source likely promoted molybdenite precipitation in the Sangdong orebodies, whereas the scheelite deposition in the deep quartz–molybdenite veins hosted in the quartzite is limited by a lack of Ca and Fe in the hydrothermal fluids. The molybdenite deposition in the Sunbawi quartz–molybdenite veins hosted in the Precambrian metamorphic basement rocks was possibly limited by a lack of reducing agents such as organic C.  相似文献   
176.
The Matou Mo(-Cu) deposit, located in the Yangtze Valley Metallogenic Belt of central-eastern China, is a typical porphyry-type Mo deposit. The orebodies at the deposit are hosted by Matou porphyritic granodiorite, which is the largest intrusive in the area. Quartz vein-type and disseminated sulfide mineralization are well developed in the porphyry and near its contact with Silurian sandstone. Crosscutting relationships indicate that porphyritic granodiorite is the oldest phase in the pluton, which is crosscut by a porphyritic diorite containing traces of chalcopyrite, and later dolerite dykes. These phases have U-Pb zircon dates of 147 ± 3, 140 ± 1 and 135 ± 1 Ma, which confirms the cross-cutting relationships observed in the field. A Re-Os molybdenite isochron age of 147 ± 4 Ma indicates that the porphyritic granodiorite is the source of the oldest Mo mineralization in the metallogenic belt and was formed during a change of the tectonic setting in the area, from an intracontinental orogeny to extensional tectonics. From 147 to 135 Ma, crust-mantle interaction played an important role in the formation of magmatic rocks at Matou. Systematic petrological and geochemistry investigations reveal that the three phases have a crust source with minor input from the mantle. Investigation of ore-forming fluid, H-O isotopes, S isotopes, and the Re content of molybdenite indicate that the ore-forming fluid and metals were derived from the lower crust. During the evolution of fluid from initial magmatic fluids (stage I) to ore-forming fluids (stage II), fluid boiling accompanied by the input of relatively cooler meteoric water led to the deposition of the Mo mineralization.  相似文献   
177.
This review was prepared as an opening lecture for the International Symposium on Physics of Fracturing and Seismic Energy Release, held at the Castle of Liblice near Prague from October 28 to November 1, 1985, and organized by the Geophysical Institute of the Czechoslovak Academy of Sciences. The review attempts to classify and synthesize results of recent studies in fracture mechanics and earthquake source physics. The following topics are discussed: recent developments in fracture mechanics, earthquake source modeling, heterogeneous fault planes, foreshocks and aftershocks, faults and fractals, and moment tensor solutions. This rather broad range of topics prevents presentation of a complete list of all relevant works, though over one hundred and seventy references are cited.  相似文献   
178.
Chemical analyses suggest that the metavolcanic rocks of the Almas Greenstone Belt (AGB), Tocantins State, Brazil have a continental affinity, possibly related to a continental rift environment. They were metamorphosed to amphibolite facies during a regional tectono-metamorphic event (Dn), retrogressed to greenschist facies assemblages and then hydrothermally altered within dextral strike–slip shear zones (Dn+1). Fracture sets related to Dn+2 intersect Sn+1.The Paiol Gold Mine is one of several mineralised zones within metabasic and meta-intermediate rocks of the AGB. It exploits shoots of sulphide–Au–quartz mineralisation that occupy dilational zones approximately perpendicular to an elongation lineation (Ln+1) within mylonitic foliation Sn+1 (Sn+1=S within the S–C fabric). The dilational zones probably formed due to dextral displacement on sinistrally en echelon C surfaces. Minor amounts of gold may have been introduced or remobilised during Dn+2.Coexisting primary and pseudosecondary fluid inclusions in mineralised quartz veins from ore shoots comprise a high-salinity three-phase type (Type II) and a lower salinity two-phase type (Type I). Homogenisation temperatures for Type II inclusions range from 200 to 410 °C and Type I from 90 to 320 °C. The inclusions and their temperature ranges are believed to reflect heat exchange and some mixing between the two fluid types under relatively constant ambient temperatures, but variable (though broadly declining) fluid temperatures. This took place late in Dn+1 in conjunction with greenschist facies retrogression and localised hydrothermally induced metasomatism.  相似文献   
179.
CO2 inclusions with density up to 1,197 kg m−3 occur in quartz–stibnite veins hosted in the low-grade Palaeozoic basement of the Gemericum tectonic unit in the Western Carpathians. Raman microanalysis corroborated CO2 as dominant gas species accompanied by small amounts of nitrogen (<7.3 mol%) and methane (<2.5 mol%). The superdense CO2 phase exsolved from an aqueous bulk fluid at temperatures of 183–237°C and pressures between 1.6 and 3.5 kbar, possibly up to 4.5 kbar. Low thermal gradients (∼12–13°C km−1) and the CO2–CH4–N2 fluid composition rule out a genetic link with the subjacent Permian granites and indicate an external, either metamorphogenic (oxidation of siderite, dedolomitization) or lower crustal/mantle, source of the ore-forming fluids.According to microprobe U–Pb–Th dating of monazite, the stibnite-bearing veins formed during early Cretaceous thrusting of the Gemeric basement over the adjacent Veporic unit. The 15- to 18-km depth of burial estimated from the fluid inclusion trapping PT parameters indicates a 8- to 11-km-thick Upper Palaeozoic–Jurassic accretionary complex overlying the Gemeric basement and its Permo-Triassic autochthonous cover.  相似文献   
180.
对云南元阳县大坪大型金多金属矿床矿脉地质特征、流体包裹体和稳定同位素的研究表明,矿区内大量的矿脉是叠加成矿的产物,空间上具有并置、侧列(现)、再现等复杂关系,成矿可分石英.黄铁矿(主要形成金矿化)和石英.方铅矿(主要形成铜铅银矿化,并叠加有金矿化)两个阶段共7个亚阶段。石英-黄铁矿阶段流体包裹体以个体小,数量多。杂乱分布为特征,以二相气液包裹体为主,均一温度变化区间为165℃~393℃,平均258℃;流体密度为0.648—0.7984g/cm^3,盐度变化为13,72%~18.96%NaCleqv,平均17.13%NaCleqv,捕获压力为64MPa左右。流体为含CO2的NaCl-H2O体系,在成分上相对富集Na^+、Cl^-、CH4和N2、NO3^-等组分,从早到晚,具有Na^+、Ca^2+、SO4^2-略有升高,而K^+有所降低的趋势。石英方铅矿阶段流体包裹体大小混杂,杂乱分布或呈线性排列,以CO2包裹体为主,并有二相气液和少量单相包裹体。均一温度177℃~372℃,平均284℃,流体密度为0,7413~O.9518g/cm^3,盐度变化为10.86%~21.26%NaCleqv,平均14.16%NaCleqv,捕获压力为60MPa左右。流体属为NaCl-H2O-CO2体系,在成分上以相对富集Na^+、K^+、SO4^2-为特征,部分脉体的流体包裹体中还含有一定量的Ca^2+、Mg^2+等离子。矿区不同(亚)阶段矿石氧同位组成总体变化较小(2.65‰~6.0‰),氢同位素组成变化较大(-120%~-40‰),其中石英-黄铁矿阶段H、O同位素组成变化均较小,以岩浆源为主,而石英.方铅矿阶段氢同位素组成变化较大,表明有新的流体加入,但也以深源流体为主;石英-方铅矿阶段一个铁白云石的δ^13C值为-4.81%o,而石英.黄铁矿阶段晚期方解石碳同位素组成变化为-2.79‰~-4.34‰,平均-3.75‰。不同矿脉黄铁矿、方铅矿的硫同位素组成变化范围为0.3‰-4.4‰,其中石英-黄铁矿阶段为0.3‰~4.4‰,石英-方铅矿阶段为0.5~4.3‰,总体上与深源(地幔)碳、硫同位素组成基本一致。综合对比研究认为,大坪金多金属矿床为源于深部的多源成矿热液在同一容矿空间充填的结果,叠加成矿作用与区内长期的岩浆活动密切相关。矿床为中-高温热液硫化物.石英薄脉型金多金属矿床。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号