首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   12篇
  国内免费   18篇
测绘学   4篇
大气科学   1篇
地球物理   33篇
地质学   42篇
海洋学   55篇
综合类   1篇
自然地理   1篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   6篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   6篇
  2011年   3篇
  2010年   4篇
  2009年   9篇
  2008年   8篇
  2007年   5篇
  2006年   14篇
  2005年   10篇
  2004年   8篇
  2003年   2篇
  2002年   7篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1977年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
101.
Sandy sedimentary rocks rich in detrital matrix (>10% silt/clay) have long been recognized in the ancient sedimentary record, and nowhere more commonly than in deep‐marine turbidite systems. Despite this, their depositional mechanisms remain poorly understood, in part because these rocks, which are enriched in fine‐grained sediment, are often poorly exposed in outcrop or are confined to observation in core. Matrix‐rich strata in the Neoproterozoic Windermere Supergroup, in contrast, are very well‐exposed and show systematic changes in lithofacies over distances of several tens to a few hundreds of metres along‐strike. Notably, these strata are observed in both basin floor and continental slope deposits, suggesting that their occurrence and systematic lithological arrangement is related to mechanistic, rather than palaeogeographic, controls. Specifically, the facies transect consists of structureless, clayey sandstone that transforms along‐strike to a two‐layer deposit with the development of an upper, planar‐based, markedly more matrix‐rich layer. Further along‐strike, the basal clayey sandstone thins and eventually pinches out, leaving only the (upper) sandy claystone layer, which in turn thins along‐strike and then pinches out. These systematic changes in lithology, but more specifically the distribution of clay, is interpreted to form a depositional continuum related to particle settling in a horizontally advecting, high concentration particle suspension formed along the margins of an avulsion‐related high‐energy turbulent suspension.  相似文献   
102.
103.
沉积结构与沉积构造的研究是目前细粒沉积学中的重要内容。同时,富有机质泥/页岩的纹层成因也一直是困扰人们的难题。影响湖盆细粒沉积物纹层形成的因素很多,其中盐度、有机质含量是非常重要的因素,尤其是油页岩在淡水与咸水环境均可发育,其纹层的形成与水体盐度有何关系需要深入探讨。通过长试管静置实验,模拟并观察在静水条件下,黏土矿物、富有机质泥质沉积物在淡水、微咸水及咸水3种湖盆水体环境中的沉降过程与沉降速率,通过实验观察绘制沉降过程曲线并计算沉降速率。研究表明: 在淡水中富有机质泥的沉降速率明显高于黏土矿物的沉降速率;而在微咸水与咸水中,黏土矿物的沉降速率明显比富有机质泥要高;同时,2种类型的细粒沉积物在3类水体环境中各自的沉降速率也存在不同的规律。通过分析实验结果,指出在不同水介质条件下,絮凝作用类型的差异与浮力作用的影响是造成细粒沉积速率差异的主要原因。而有机质、黏土矿物及水体盐度共同控制细粒沉积物的沉降速率,一旦这些条件发生变化,那么就容易形成类似或不同的纹层,尤其是有机质丰度与盐度变化时,更容易形成不同成分的纹层。因此,油页岩的形成除需要相对安静水体环境外,还与有机质丰度、黏土矿物含量、絮凝过程及水体盐度变化的综合响应有关,而并非单独与水体盐度相关。另外,受沉积作用影响,湖盆不同区域的细粒沉积构造类型有差异。  相似文献   
104.
南海北部时间系列沉降颗粒的有机地球化学特征及意义   总被引:3,自引:1,他引:3  
陈建芳 Wong  HK 《地球化学》1997,26(6):47-56
通过对南海北部用大孔径沉积物捕获器采集的时间系列沉降颗粒样品中总有机碳,总氮,氨基酸与单糖组分以及叶绿素等有机组分的分析,揭示了南海颗粒物质中有机组分的主要特征,表明沉降颗粒物质中有机质主要来自近期生长的海洋浮游生物,并进一步推断季风对南海北部沉降颗粒物质通量及有机组分具有重要的控制作用。  相似文献   
105.
通过对哈密气象站1980-2008年家燕物候资料和气象资料的分析,得出当地家燕物候变化规律及停留时间与气象因子的关系。结果表明:(1)家燕始见日期均在4月,其中4月中旬较多,平均日期为4月16日,绝见日期均在9月且集中于中旬,平均日期为9月16日;(2)家燕停留期为4—9月,平均停留153d;(3)停留期与同期≥0℃积温和日照时数均呈显著的正相关关系,而随降水量的变化在不同时段呈现或同向或反向的趋势;(4)≥0℃积温和日照时数均为增加趋势,总体上家燕停留期变化与二者变化趋势一致,但近6a停留期缩短。  相似文献   
106.
碎屑的形貌参数是计算碎屑最终沉降速度公式中的一个重要参数,而以往在计算中只是把碎屑假设为球形或椭球形,未对其进行详细研究.通过对长白山天池火山千年大喷发产生的空降碎屑的形貌分析得到一些新的认识:空降碎屑以浮岩为主,浮岩碎屑的形态不规则,从等轴状到拉长状,从次圆状到棱角状都有.随着浮岩碎屑粒径的减小,颗粒拉长现象明显,拉...  相似文献   
107.
结晶分异作用的岩浆动力学条件   总被引:8,自引:0,他引:8  
马昌前 《地球科学》1989,14(3):245-252
  相似文献   
108.
Aggregation processes of fine sediments have rarely been integrated in numerical simulations of cohesive sediment transport in riverine systems. These processes, however, can significantly alter the hydrodynamic characteristics of suspended particulate matter (SPM), modifying the particle settling velocity, which is one of the most important parameters in modelling suspended sediment dynamics. The present paper presents data from field measurements and an approach to integrate particle aggregation in a hydrodynamic sediment transport model. The aggregation term used represents the interaction of multiple sediment classes (fractions) with corresponding multiple deposition behaviour. The k–ε–turbulence model was used to calculate the coefficient of vertical turbulent mixing needed for the two‐dimensional vertical‐plane simulations. The model has been applied to transport and deposition of tracer particles and natural SPM in a lake‐outlet lowland river (Spree River, Germany). The results of simulations were evaluated by comparison with field data obtained for two levels of river discharge. Experimental data for both discharge levels showed that under the prevailing uniform hydraulic conditions along the river reach, the settling velocity distribution did not change significantly downstream, whereas the amount of SPM declined. It was also shown that higher flow velocities (higher fluid shear) resulted in higher proportions of fast settling SPM fractions. We conclude that in accordance with the respective prevailing turbulence structures, typical aggregation mechanisms occur that continuously generate similar distribution patterns, including particles that settle toward the river bed and thus mainly contribute to the observed decline in the total SPM concentration. In order to determine time‐scales of aggregation and related mass fluxes between the settling velocity fractions, results of model simulations were fitted to experimental data for total SPM concentration and of settling velocity frequency distributions. The comparison with simulations for the case of non‐interacting fractions clearly demonstrated the practical significance of particle interaction for a more realistic modelling of cohesive sediment and contaminant transport. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
109.
Profiles of tidal current and suspended sediment concentration(SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to determine the characteristics of intratidal and neap-spring variations of SSC and suspended sediment transport. Modulated by tidal range and current speed, the tidal mean SSC increased from 0.5 kg/m3 in neap tide to 3.5 kg/m3 in spring tide. The intratidal variation of the depth-mean SSC can be summarized into three types: V-shape variation in neap tide, M-shape and mixed M-V shape variation in medium and spring tides. The occurrence of these variation types is controlled by the relative intensity and interaction of resuspension, settling and impact of water exchange from the rise and fall of tide. In neap tide the V-shape variation is mainly due to the dominant effect of the water exchange from the rise and fall of tide. During medium and spring tides, resuspension and settling processes become dominant. The interactions of these processes, together with the sustained high ebb current and shorter duration of low-tide slack, are responsible for the M-shape and M-V shape SSC variation. Weakly consolidated mud and high current speed cause significant resuspension and remarkable flood and ebb SSC peaks. Settling occurs at the slack water periods to cause SSC troughs and formation of a thin fluff layer on the bed. Fluxes of water and suspended sediment averaged over the neap-spring cycle are all seawards, but the magnitude and direction of tidal net sediment flux is highly variable.  相似文献   
110.
In order to better understand the relationship between the natural radionuclide 234Th and particulate organic carbon (POC), marine particles were collected in the northwestern Mediterranean Sea (spring/summer, 2003 and 2005) by sediment traps that separated them according to their in situ settling velocities. Particles also were collected in time-series sediment traps. Particles settling at rates of >100 m d−1 carried 50% and 60% of the POC and 234Th fluxes, respectively, in both sampling years. The POC flux decreased with depth for all particle settling velocity intervals, with the greatest decrease (factor of 2.3) in the slowly settling intervals (0.68–49 m d−1) over trap depths of 524–1918 m, likely due to dissolution and decomposition of material. In contrast the flux of 234Th associated with the slowly settling particles remained constant with depth, while 234Th fluxes on the rapidly settling particles increased. Taking into account decay of 234Th on the settling particles, the patterns of 234Th flux with depth suggest that either both slow and fast settling particles scavenge additional 234Th during their descent or there is significant exchange between the particle classes. The observed changes in POC and 234Th flux produce a general decrease in POC/234Th of the settling particles with depth. There is no consistent trend in POC/234Th with settling velocity, such as might be expected from surface area and volume considerations. Good correlations are observed between 234Th and POC, lithogenic material and CaCO3 for all settling velocity intervals. Pseudo-Kds calculated for 234Th in the shallow traps (2005) are ranked as lithogenic material opal <calcium carbonate <organic carbon. Organic carbon contributes 33% to the bulk Kd, and for lithogenic material, opal and CaCO3, the fraction is 22% each. Decreases in POC/234Th with depth are accompanied by increases in the ratio of 234Th to lithogenic material and opal. No change in the relationship between 234Th and CaCO3 was evident with depth. These patterns are consistent with loss of POC through decomposition, opal through dissolution and additional scavenging of 234Th onto lithogenic material as the particles sink.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号