首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3865篇
  免费   1031篇
  国内免费   1637篇
测绘学   18篇
大气科学   9篇
地球物理   1436篇
地质学   4662篇
海洋学   138篇
天文学   2篇
综合类   151篇
自然地理   117篇
  2024年   14篇
  2023年   48篇
  2022年   99篇
  2021年   124篇
  2020年   153篇
  2019年   214篇
  2018年   222篇
  2017年   204篇
  2016年   255篇
  2015年   212篇
  2014年   294篇
  2013年   318篇
  2012年   295篇
  2011年   275篇
  2010年   207篇
  2009年   275篇
  2008年   296篇
  2007年   286篇
  2006年   308篇
  2005年   249篇
  2004年   236篇
  2003年   217篇
  2002年   164篇
  2001年   187篇
  2000年   160篇
  1999年   172篇
  1998年   138篇
  1997年   130篇
  1996年   119篇
  1995年   100篇
  1994年   119篇
  1993年   93篇
  1992年   76篇
  1991年   59篇
  1990年   46篇
  1989年   26篇
  1988年   32篇
  1987年   32篇
  1986年   19篇
  1985年   9篇
  1984年   11篇
  1983年   4篇
  1981年   2篇
  1979年   13篇
  1978年   12篇
  1977年   4篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1954年   1篇
排序方式: 共有6533条查询结果,搜索用时 31 毫秒
101.
羌塘岩带碰撞后超钾质火山岩地球化学特征及成因探讨   总被引:1,自引:0,他引:1  
羌塘超钾质火山岩为板块碰撞后的产物,地球化学特征表明,其同时具有板内火山岩和俯冲带岛弧火山岩的双重地球化学特性。化学组成上富含轻稀土和大离子亲石元素而亏损Cr、Ni等相容元素。在成因上受分离结晶作用和源区混合作用共同制约。源区为受古俯冲上地壳物质和下地幔上升流体交代混合的EMII型富集地幔端元,可能富含角闪石和金云母等矿物。  相似文献   
102.
岩石断裂作用的复杂性和混沌动力学   总被引:1,自引:0,他引:1  
断裂是一个复杂的动力学体系,受到岩石结构、反应、流体迁移、应力、岩石变形和力学等多种地质因素和过程的耦合控制。本文建立了断裂体系的反应-输运-力学耦合动力学模型并编制了模拟程序。以湖南水口山矿区为例,通过动力学模拟表明不同地层岩性的断裂渗透率大小和演化特征存在显著差异,断裂作用促使岩石渗透率的空间非均匀性增强,从而有利于流体的局部汇聚和矿体的形成。断裂中压力随时间呈现出非周期振荡变化,反映了断裂演化的混沌特征。  相似文献   
103.
The Interior Basin of Gabon, created during the break-up between South America and Africa, displays thick Neoproterozoic to Aptian p.p. fluvio-lacustrine deposits overlain by Aptian to Albian marine facies. Rock–Eval analyses from outcrop and drillhole samples show high content in organic matter (up to 25%) related to types I and II. These intervals are encountered within Permian, Neocomian–Barremian as well as Aptian siliciclastic succession. They constitute fairly good to excellent potential petroleum source rocks, which are most probably at the origin of oil indices recognized both in drillholes and in surface.  相似文献   
104.
The analysis of modal and normative composition of sedimentary rocks is widely used for studying their sources and tectonic settings. The normative calculation of the mineral composition of rocks in this study is formulated as a linear programming problem and is solved by means of the simplex method. This enables both simultaneous and successive subtraction of a set of basic minerals from a rock sample represented by its chemical composition {SiO2...LOI}. Such an approach provides a more exact calculation of the contribution of basic minerals in the rock. This mathematical approach is used to study two representative sets of sandstones and fine-grained rocks from a Meso- to Neoproterozoic marginal basin of southeastern Siberia (Uchur–Maya region, Yakutia) and a Pennsylvanian-Lower Permian uplifted continental block in Colorado, USA. The calculated normative mineral compositions of the Siberian sandstones are consistent with the observed modal compositions. These sandstones vary from K- Feldspar rich arkoses at the base of the sequence (the Uchur Group, lower Riphean) to quartz arenites or lithic sandstones and wacke in transgressive successions of the middle-upper Riphean. Arkoses and quartz arenites are dominant in Meso- to Neoproterozoic Siberia. These samples represent craton interior uplifted basement and quartzose, recycled orogen provenance of a stable craton in Rodinia. There are higher but consistent discrepancies between the calculated and observed compositions for the Pennsylvanian to Lower-Permian arkoses and quartz arenites (Sangre de Cristo, Belden, and Maroon Formations). The differences between the predicted and observed mineralogy may be due to uncertainties in the modes in the matrix and cement of the sandstones. This normative program should supplement modal calculations and provide better genetic constructions, especially in case of matrix-rich sandstones.  相似文献   
105.
The 3-D seismic tomographic data are used together with field, core and well log structural information to determine the detailed 3-D architecture of fault zones in a granitic massif of volume 500×575×168 m at Mina Ratones area in the Albalá Granitic Pluton. To facilitate the integration of the different data, geostatistical simulation algorithms are applied to interpolate the relatively sparse structural (hard) control data conditioned to abundant but indirect 3-D (soft) seismic tomographic data. To effectively integrate geologic and tomographic data, 3-D migration of the velocity model from the time domain into the depth domain was essential. The resulting 3-D model constitutes an image of the fault zone architecture within the granitic massif that honours hard and soft data and provides an evaluation of the spatial variability of structural heterogeneities based on the computation of 3-D experimental variograms of Fracture Index (fault intensity) data. This probabilistic quantitative 3-D model of spatially heterogeneous fault zones is suitable for subsequent fluid flow simulations. The modeled image of the 3-D fault distribution is consistent with the fault architecture in the Mina Ratones area, which basically consists of two families of subvertical structures with NNE–SSW and ENE–WSW trends that displaces the surfaces of low-angle faults (North Fault) and follows their seismically detected staircase geometry. These brittle structures cut two subvertical dykes (27 and 27′ Dykes) with a NNE–SSW to N–S trend. The faults present high FI (FI>12) adjacent bands of irregular geometry in detail that intersect in space delimiting rhombohedral blocks of relatively less fractured granite (FI<6). Both structural domains likely correspond with the protolith and the damaged zone/fault core in the widely accepted model for fault zone architecture. Therefore, the construction of 3-D grids of the FI in granitic areas affected by brittle tectonics permits the quantitative structural characterization of the rock massif.  相似文献   
106.
Southern Okinawa Trough represents an early stage of back-arc rifting and is characterized by normal faulting and microearthquakes. Earthquake distribution and deep structure of fault was investigated to clarify active rifting in the southern Okinawa Trough, where two parallel grabens are located. A network of ocean bottom seismometers (OBSs) that displayed the hypocenters of 105 earthquakes were observed for a period of 4 days in southern-graben (SG). Most of the microearthquakes occurred in a cluster about 7 km wide, which on a cross-section striking N45°E dips 48° to the southwest. Relocated hypocenters, which are recorded by a local seismic network, show scattered distribution around the southern-graben. There are no remarkable surface faults in the southern-graben. On the other hand, the recalculation of hypocenter locations of 1996 earthquakes swarm recorded by a local seismic network suggests that the swarm is associated with normal faulting on the southern side of northern-graben (NG). Thus, the undeveloped southern-graben is located to the south of the developed northern-graben. Southward migration of rifting, which may be caused by migration of volcanism, could thus be occurring in the southern Okinawa Trough. The extension rate computed for the southern Okinawa Trough from the fault model of the northern-graben is 4.6 cm/year, which is 59–102% of the extension rate (GPS measurements). This result indicates that the majority of extensional deformation is concentrated within the center of the northern-graben in the Okinawa Trough.  相似文献   
107.
Mine development along a 15-mile (24 km) section of the Warfield Fault in Mingo County, West Virginia has broadened the geological understanding of the fault and its related structures. The fault has been exposed in two new road cuts, one in the northeast-trending segment at Neely Branch and one in the eastern east-trending segment at the head of Marrowbone Creek. Both exposures show a well-defined normal fault with a 45° to 55° N dip, juxtaposing sandstone/shale packages from the roof and the floor of the Coalburg seam. The fault is associated with a thin gouge zone, some drag folding, and parallel jointing. Its trace tends to run parallel to the crest of the adjacent Warfield Anticline. Based on underground mine development and detailed core drilling, the vertical offset along the fault plane ranges from a maximum of 240 ft (73 m) in the central part of the area near the structural bend to less than 100 ft (30 m) in western and eastern directions. The fault is located along the relatively steeply dipping (locally in excess of 25%) southern limb of the Warfield Anticline, and appears related to a late phase of extension involving folded Pennsylvanian strata. On a regional scale, the lithological variations across the fault do not suggest any appreciable strike-slip component.Underground room and pillar mines in the Coalburg seam north and south of the fault have been greatly impacted by the Warfield structures. Due to the combined (and opposite) effects of the folding and faulting, the northern mines are located up to 400 ft (125 m) higher in elevation than the southern ones. Overland conveyor belts connect mining blocks separated by the fault. The practical mining limit along the steep slopes toward the fault is around 15%. Subsidiary normal faults with offsets in the 5- to 15-ft (1.5–4.5 m) range are fairly common and form major roof control and production hurdles. Overall, the Warfield structures pose an extra challenge to mine development in this part of the Appalachian Coalfields.  相似文献   
108.
The inference of fault geometry from suprajacent fold shape relies on consistent and verified forward models of fault-cored folds, e.g. suites of models with differing fault boundary conditions demonstrate the range of possible folding. Results of kinematic (fault-parallel flow) and mechanical (boundary element method) models are compared to ascertain differences in the way the two methods simulate flexure associated with slip along flat-ramp-flat geometry. These differences are assessed by systematically altering fault parameters in each model and observing subsequent changes in the suprajacent fold shapes. Differences between the kinematic and mechanical fault-fold relationships highlight the differences between the methods. Additionally, a laboratory fold is simulated to determine which method might best predict fault parameters from fold shape. Although kinematic folds do not fully capture the three-dimensional nature of geologic folds, mechanical models have non-unique fold-fault relationships. Predicting fault geometry from fold shape is best accomplished by a combination of the two methods.  相似文献   
109.
110.
昆仑山口西8.1级地震前青藏块体边界断层异常活动   总被引:5,自引:0,他引:5  
范燕  车兆宏 《地震》2003,23(2):121-126
系统分析了青藏块体边界断层的形变资料,研究了断层活动的动态过程及空间分布。结果表明,昆仑山口西8.1级地震前孕震影响范围达到青藏块体的周边地区;发震断层所在的构造带震前断层活动最为剧烈;加强对构造块体断层整体活动的宏观动态比较和分析,有助于判定未来强震发生的危险地段;震后应力将转移并集中到西秦岭构造带及其邻近地区。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号