首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2805篇
  免费   815篇
  国内免费   637篇
测绘学   209篇
大气科学   44篇
地球物理   1822篇
地质学   1766篇
海洋学   139篇
天文学   4篇
综合类   166篇
自然地理   107篇
  2024年   4篇
  2023年   16篇
  2022年   58篇
  2021年   88篇
  2020年   112篇
  2019年   152篇
  2018年   148篇
  2017年   139篇
  2016年   199篇
  2015年   162篇
  2014年   198篇
  2013年   231篇
  2012年   173篇
  2011年   213篇
  2010年   138篇
  2009年   225篇
  2008年   220篇
  2007年   212篇
  2006年   173篇
  2005年   161篇
  2004年   154篇
  2003年   136篇
  2002年   113篇
  2001年   104篇
  2000年   96篇
  1999年   84篇
  1998年   72篇
  1997年   70篇
  1996年   68篇
  1995年   65篇
  1994年   58篇
  1993年   45篇
  1992年   29篇
  1991年   26篇
  1990年   17篇
  1989年   16篇
  1988年   22篇
  1987年   11篇
  1986年   8篇
  1985年   1篇
  1984年   12篇
  1983年   4篇
  1981年   1篇
  1980年   1篇
  1979年   14篇
  1978年   5篇
  1977年   2篇
  1954年   1篇
排序方式: 共有4257条查询结果,搜索用时 62 毫秒
101.
102.
103.
Dhananjay  Regmi  Teiji  Watanabe 《Island Arc》2005,14(4):400-409
Abstract   The rates of the accumulated and continuous displacement of solifluction lobes in the Kangchenjunga area, eastern Nepal Himalaya, were determined using glass fiber tubes and a strain probe. Ground temperature, precipitation and soil moisture were monitored at two sites, whose altitude differed by approximately 100 m, to understand the solifluction process. The average movement rate of the glass fiber tubes on a 31° slope at altitudes of 5412–5414 m a.s.l. was approximately 11 mm/year, being almost threefold greater than that observed on a 22° slope at 5322–5325 ma.s.l. There was no significant difference in the depth of displacement at these sites. The continuous displacement measurement near the ground surface at 5414 m showed permanent downslope movement from early July. Such movement may be attributed to additional moisture supply during the monsoon season. The amplitude of the displacement cycle was highest at the ground surface, and decreased to virtually zero at and below 20 cm in depth. Probable factors leading to the relatively slow rates of downslope displacement at the surface and depth at the studied altitudes are the lack of concurrence of the freeze–thaw cycles and the high moisture condition in the soil, and the low moisture retention capacity of the soil because of steep slopes and superficial desiccation. The rate of displacement may be more pronounced at altitudes above 5600 m because of the freeze–thaw cycles during the summer season.  相似文献   
104.
This paper deals with an analysis method for the response and motion of soil-like rigid-plastic bodies under seismic loading conditions. A continuity condition to determine the acceleration distribution within the rigid-plastic body when the failure occurs during seismic motions is proposed. Combining this continuity condition of acceleration and the ‘Generalized Limit Equilibrium Method (GLEM)’, the responses of the earth structure during seismic motions as well as the permanent displacements can be obtained, where GLEM is one of the limit equilibrium methods proposed by the authors for static problems and providing the approximate solution for Kötter's equation. The theoretical formulation of the method, the illustrative examples, and some comparisons between the analytical and experimental results are demonstrated.  相似文献   
105.
The most significant damage on highway bridges during the recent earthquakes in Turkey (Kocaeli and Duzce earthquakes) and Taiwan (Chi–Chi earthquake) was the result of fault ruptures traversing transportation infrastructure. This phenomenon and its consequences accentuate the need to examine surface rupture hazards and to identify those areas at risk. This understanding can help to develop remedial measures for both structural and geotechnical engineering. For that purpose, damage to highway bridges during the recent events was reviewed. The total collapse of the highway overpass in Arifiye, during the Kocaeli earthquake, was investigated. The major problems under consideration (in Arifiye) were: (i) dislodging of the bridge spans, and consequently, the total separation of the reinforced concrete girders from the piers; and (ii) the stability of a mechanically stabilized earth wall (MSEW) system under extreme loading conditions. The results of the structural and geotechnical investigations presented herein can be taken in consideration to improve transportation infrastructure against surface rupture hazards.  相似文献   
106.
Image processing of 2D resistivity data for imaging faults   总被引:6,自引:0,他引:6  
A methodology to locate automatically limits or boundaries between different geological bodies in 2D electrical tomography is proposed, using a crest line extraction process in gradient images. This method is applied on several synthetic models and on field data set acquired on three experimental sites during the European project PALEOSIS where trenches were dug. The results presented in this work are valid for electrical tomographies data collected with a Wenner-alpha array and computed with an l1 norm (blocky inversion) as optimization method. For the synthetic cases, three geometric contexts are modelled: a vertical and a dipping fault juxtaposing two different geological formations and a step-like structure. A superficial layer can cover each geological structure. In these three situations, the method locates the synthetic faults and layer boundaries, and determines fault displacement but with several limitations. The estimated fault positions correlate exactly with the synthetic ones if a conductive (or no superficial) layer overlies the studied structure. When a resistive layer with a thickness of 6 m covers the model, faults are positioned with a maximum error of 1 m. Moreover, when a resistive and/or a thick top layer is present, the resolution significantly decreases for the fault displacement estimation (error up to 150%). The tests with the synthetic models for surveys using the Wenner-alpha array indicate that the proposed methodology is best suited to vertical and horizontal contacts. Application of the methodology to real data sets shows that a lateral resistivity contrast of 1:5–1:10 leads to exact faults location. A fault contact with a resistivity contrast of 1:0.75 and overlaid by a resistive layer with a thickness of 1 m gives an error location ranging from 1 to 3 m. Moreover, no result is obtained for a contact with very low contrasts (1:0.85) overlaid by a resistive soil. The method shows poor results when vertical gradients are greater than horizontal ones. This kind of image processing technique should be systematically used for improving the objectiveness of tomography interpretation when looking for limits between geological objects.  相似文献   
107.
Real-time simulation of ground displacement by digital accelerograph record   总被引:1,自引:0,他引:1  
Introduction The observation records of strong ground motion previously, on the one hand, supplied basicdata both to research on earthquake engineering and to constitute the criterion of aseismatic de-signing of all project structures; on the other hand, it provided important information for the re-search on the process of epicenter burst in seismology. With the development of research on strongground motion observation, especially the development of the new generation accelerograph,which…  相似文献   
108.
Models capable of estimating losses in future earthquakes are of fundamental importance for emergency planners, for the insurance and reinsurance industries, and for code drafters. Constructing a loss model for a city, region or country involves compiling databases of earthquake activity, ground conditions, attenuation equations, building stock and infrastructure exposure, and vulnerability characteristics of the exposed inventory, all of which have large associated uncertainties. Many of these uncertainties can be classified as epistemic, implying—at least in theory—that they can be reduced by acquiring additional data or improved understanding of the physical processes. The effort and cost involved in refining the definition of each component of a loss model can be very large, for which reason it is useful to identify the relative impact on the calculated losses due to variations in these components. A mechanically sound displacement‐based approach to loss estimation is applied to a test case of buildings along the northern side of the Sea of Marmara in Turkey. Systematic variations of the parameters defining the demand (ground motion) and the capacity (vulnerability) are used to identify the relative impacts on the resulting losses, from which it is found that the influence of the epistemic uncertainty in the capacity is larger than that of the demand for a single earthquake scenario. Thus, the importance of earthquake loss models which allow the capacity parameters to be customized to the study area under consideration is highlighted. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
109.
Continent-continent collision is the most important driving mechanism for the occurrence of various geological processes in the continental lithosphere. How to recognize and determine continent-continent collision,especially its four-dimensional temporal-spatial evolution, is a subject that geological communities have long been concerned about and studied. Continent-continent collision is mainly manifested by strong underthrnsting (subduction) of the underlying block along an intracontinental subduction zone and continuous obduction (thrusting propagation) of the overlying block along the intracontinental subduction zone, the occurrence of a basin-range tectonic framework in a direction perpendicular to the subduction zone and the flexure and disruption of the Moho. On the basis of numerical modeling, the authors discuss in detail the couplings between various amounts and rates of displacement caused by basin subsidence, mountain uplift and Moho updoming and downflexure during obduction (thrusting propagation) and subduction and the migration pattern of basin centers. They are probably indications or criteria for judgment or determination of continent-continent collision.  相似文献   
110.
Microcracks in the Cretaceous Ryoke-type granite in Japan were investigated by using deep drilling core samples collected in the Mizunami Underground Research Project of the Japan Nuclear Cycle Development Institute (JNC). The granite body suffered brittle deformation associated with Tertiary thrust movement. Based on core-scale and microscopic deformation features, the drill core from a depth of 300 to 700 m is divided into four domains, i.e. (A) undeformed granite, (B) granite intruded by cataclastic seams, (C) fractured granite in the fault damage zone, and (D) foliated cataclasite at the fault center. To characterize microcrack geometries in each domain, we employed the impregnation method using a low-viscous acrylic resin doped with fluorescent agents and captured the microcrack images by confocal laser scanning microscopy (CLSM). The CLSM image in the fault damage zone revealed anisotropic development of microcrack networks related to the fault movement. Both CLSM observation and porosity measurements reveal a drastic increase of micro-pores in the foliated cataclasite, possibly caused by fragmentation, and granulation and crack sealing in the fault zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号