首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2000篇
  免费   185篇
  国内免费   244篇
测绘学   204篇
大气科学   234篇
地球物理   230篇
地质学   487篇
海洋学   590篇
天文学   17篇
综合类   115篇
自然地理   552篇
  2024年   6篇
  2023年   17篇
  2022年   67篇
  2021年   78篇
  2020年   77篇
  2019年   82篇
  2018年   49篇
  2017年   75篇
  2016年   77篇
  2015年   79篇
  2014年   102篇
  2013年   114篇
  2012年   106篇
  2011年   105篇
  2010年   80篇
  2009年   109篇
  2008年   133篇
  2007年   107篇
  2006年   131篇
  2005年   99篇
  2004年   82篇
  2003年   60篇
  2002年   93篇
  2001年   68篇
  2000年   66篇
  1999年   53篇
  1998年   51篇
  1997年   42篇
  1996年   35篇
  1995年   26篇
  1994年   25篇
  1993年   25篇
  1992年   16篇
  1991年   11篇
  1990年   10篇
  1989年   11篇
  1988年   6篇
  1987年   11篇
  1986年   6篇
  1985年   8篇
  1984年   9篇
  1983年   10篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1978年   1篇
排序方式: 共有2429条查询结果,搜索用时 250 毫秒
551.
552.
553.
554.
555.
556.
557.
Hydrographic changes in the Labrador Sea, 1960–2005   总被引:1,自引:0,他引:1  
The Labrador Sea has exhibited significant temperature and salinity variations over the past five decades. The whole basin was extremely warm and salty between the mid-1960s and early 1970s, and fresh and cold between the late 1980s and mid-1990s. The full column salinity change observed between these periods is equivalent to mixing a 6 m thick freshwater layer into the water column of the early 1970s. The freshening and cooling trends reversed in 1994 starting a new phase of heat and salt accumulation in the Labrador Sea sustained throughout the subsequent years. It took only a decade for the whole water column to lose most of its excessive freshwater, reinstate stratification and accumulate enough salt and heat to approach its record high salt and heat contents observed between the late 1960s and the early 1970s. If the recent tendencies persist, the basin’s storages of salt and heat will fairly soon, likely by 2008, exceed their historic highs.The main process responsible for the net cooling and freshening of the Labrador Sea between 1987 and 1994 was deep winter convection, which during this period progressively developed to its record depths. It was caused by the recurrence of severe winters during these years and in its turn produced the deepest, densest and most voluminous Labrador Sea Water (LSW1987–1994) ever observed. The estimated annual production of this water during the period of 1987–1994 is equivalent to the average volume flux of about 4.5 Sv with some individual annual rates exceeding 7.0 Sv. Once winter convection had lost its strength in the winter of 1994–1995, the deep LSW1987–1994 layer lost “communication” with the mixed layer above, consequently losing its volume, while gaining heat and salt from the intermediate waters outside the Labrador Sea.While the 1000–2000 m layer was steadily becoming warmer and saltier between 1994 and 2005, the upper 1000 m layer experienced another episode of cooling caused by an abrupt increase in the air-sea heat fluxes in the winter of 1999–2000. This change in the atmospheric forcing resulted in fairly intense convective mixing sufficient to produce a new prominent LSW class (LSW2000) penetrating deeper than 1300 m. This layer was steadily sinking or deepening over the years following its production and is presently overlain by even warmer and apparently less dense water mass, implying that LSW2000 is likely to follow the fate of its deeper precursor, LSW1987–1994. The increasing stratification of the intermediate layer implies intensification in the baroclinic component of the boundary currents around the mid-depth perimeter of the Labrador Sea.The near-bottom waters, originating from the Denmark Strait overflow, exhibit strong interannual variability featuring distinct short-term basin-scale events or pulses of anomalously cold and fresh water, separated by warm and salty overflow modifications. Regardless of their sign these anomalies pass through the abyss of the Labrador Sea, first appearing at the Greenland side and then, about a year later, at the Labrador side and in the central Labrador Basin.The Northeast Atlantic Deep Water (2500–3200 m), originating from the Iceland–Scotland Overflow Water, reached its historically freshest state in the 2000–2001 period and has been steadily becoming saltier since then. It is argued that LSW1987–1994 significantly contributed to the freshening, density decrease and volume loss experienced by this water mass between the late 1960s and the mid 1990s via the increased entrainment of freshening LSW, the hydrostatic adjustment to expanding LSW, or both.  相似文献   
558.
Saanich Inlet, British Columbia, has long been known for the presence, in most years, of anoxic bottom water. One factor contributing to this anoxia is a high level of primary production, which occurs as a major spring bloom followed by sporadic ‘mini-blooms’ throughout the summer and early fall. The process(es) by which new production is refueled after nutrient exhaustion caused by the spring bloom are not well known, since Saanich is an inverse estuary and vertical mixing driven by winds and tides is low. This study presents new observational evidence that strongly suggests that the dominant mechanism of nutrient resupply during the summer months is intermittent advective exchange, driven by pressure gradients set up by strong tidal mixing in passages outside Saanich Inlet itself. A simple box model is formulated to illustrate this mechanism. When driven by annual freshwater forcing and deepwater renewal functions characteristic of the region and measured tides for 1975, the model predicts resupply of nitrate during most of the periods observed in 1975 observations (Deep-Sea Res. 24 (1977) 775). This ‘action-at-a distance’ nutrient resupply mechanism, involving strong but localized turbulent mixing and subsequent distribution of the products of mixing over large-horizontal distances by pressure-gradient-driven flow, is likely important in other coastal regions where the estuarine circulation is weak.  相似文献   
559.
During June 1997 cruise by R/V Science No.l, observations on temporal and spatialvariations of the size-fractionated phytoplankton standing stock and primary production were carried out in the Bohai Sea. The size-fractionated chlorophyll a (Chl a) and primary production, photosynthet-ically available radiation (PAR), as well as the related physico-oceanographic and zooplanktonic parameters were measured at five time-series observation stations representing sub-areas of the sea. Results obtained show that there were the marked features of spatial zonation of Chl a and primary production in the Bohai Sea. The values in the Laizhou Bay, the Liaodong Gulf and the Bohai Gulf were high and showed close relation with tidal fluctuations, i.e. high Chl a concentration occurred during high tide in the Laizhou Bay, and during low tide in the Liaodong Gulf and the Bohai Gulf. In the strait and the central region of the Bohai Sea, the values were relatively low and no relationship with tidal fluctuation could be foun  相似文献   
560.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号