首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   4篇
  国内免费   5篇
地球物理   4篇
地质学   18篇
海洋学   6篇
天文学   2篇
自然地理   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   3篇
  1995年   1篇
  1980年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
21.
阿尔金山位于青藏高原北部边缘,在高原隆升和演化过程中扮演着重要的角色。但是,关于它的新生代隆升历史现今仍存在较大的争议。阿尔金山北麓若羌凹陷新生代接受来自山脉的剥蚀物质。因此,凹陷内的沉积特征记录了阿尔金山新生代隆升的重要信息。本文利用石油钻井编录资料及地震剖面,通过对盆地区新生代各个地层之间的接触关系、沉积相组合和沉积速率变化进行研究,结果显示阿尔金山34Ma以来的隆升分为两阶段:第一阶段为34~20.4Ma,持续低速隆升;第二阶段为16Ma至现今,急剧快速隆升。结合前人研究成果,认为渐新世—早中新世,阿尔金断裂作为一个局限在中、下地壳的韧性剪切带造成阿尔金山一带产生大范围的地表隆起,控制了山脉在第一阶段的持续低速隆升;中中新世以来,阿尔金断裂大规模左行走滑,青藏高原北缘主要通过地壳缩短的形式释放应力,控制了山脉在第二阶段的急剧快速隆升。  相似文献   
22.
华北地区是我国的政治、 经济和文化中心, 也是我国地震多发地区之一。 华北地区历史地震资料记载时间较早且较为连续, 是研究我国强震活动的理想试验场。 选取第三、 第四活动期M≥6.0地震目录作为基础资料研究华北地区强震活动特点。 首先探讨华北地区强震活动与活动地块、 边界带的关系, 然后从时间和空间上分析华北地区强震活动的轮回性阶段及其期幕活动特点, 最后计算未来5年华北地区发生下一次M≥6.0地震的累积概率和条件概率。 研究结果表明: ① 华北地区M≥6.0地震活动主要集中在活动地块的边界带, M≥7.0地震则全部发生在活动地块的边界带上, 同时华北地区地震应变释放速率与边界带的构造活动速率呈线性相关; ② 第四活动期各活跃幕的能量释放均低于第三活动期, 因此华北地区未来仍可能发生M≥6.0地震; ③ 第三、 第四活动期的主体活动区存在显著差异, 且第四活动期的强震活动较第三活动期向东迁移; ④ 在2020年年初发生第四活动期闭幕M≥6.0地震的累积概率为80%左右, 而在2022年年底前发生M≥6.0地震的条件概率为50%。 本研究可为华北地区地震大形势分析和中长期地震危险性预测提供重要参考。  相似文献   
23.
青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据   总被引:58,自引:29,他引:58  
位于青藏高原东南缘的鲜水河断裂带是一条大型的活动左旋走滑断裂带,对该断裂带进行同位素年代学研究,可以为青藏高原东南部物质迁移和构造隆升历史研究提供时代依据.Ar-Ar热年代学研究表明,鲜水河断裂带在晚新生代持续的左行走滑活动过程中,沿断裂带不同区段发生了显著的差异隆升.以黑云母的Ar同位素体系封闭温度作参照点,鲜水河断裂带北西段、中段、南东段抬升冷却穿过350℃温度点的时间分别为10.39~10.13Ma、5.70~4.42Ma和3.60~3.46Ma.这一研究结果证明青藏高原东南缘在晚新生代以来发生了幕式抬升作用,幕式抬升作用发生的时代分别为~10.1 Ma、5.7~4.4Ma和~3.6Ma.  相似文献   
24.
东营凹陷流体超压封存箱与油气运聚   总被引:15,自引:0,他引:15  
陈中红  查明 《沉积学报》2006,24(4):607-615
东营凹陷古近系由于压实不均衡和生烃作用导致超压的广泛发育,这些发育程度不同的超压体系可以构成不同级别的超压封存箱系统,控制着油气的运移和聚集。东营凹陷超压封存箱中的地质地球化学特征显示封存箱可以划分为三部分:箱缘成岩地带(封隔层),对油气起着封闭作用;烃类的有利释放带,其中超压得到一定程度释放,烃类较大程度上排出,可以称为排烃的高峰带;烃类滞留带,该带中超压未能得到很好释放,烃类也多滞留于其中,为排烃的不利地带。幕式排放是超压封存箱排液的一种重要排液方式,存在“压力幕”和“构造幕”两类方式。“构造幕”的机制是外部构造活动的破坏,其排烃方式主要是沿着断裂面及构造裂缝运移;“压力幕”的机制是超压体系内部“剩余”能量的积累和释放,其排烃方式主要是沿着压裂形成的微裂缝排放。在发生幕式排烃作用的超压体系内,排烃效率、烃指数分别较上下层段明显增大和减小。幕式排烃具有的高能量、快运移的特征,使得其在油气勘探中具有重要的意义。东营凹陷可以划分为浅层的常压开放性流体动力学系统和中部的超压封存箱流体动力学系统两类流体动力学系统(排除深层滞留系统),分别对应常压开放性它源油气成藏动力学及超压封存箱型自源油气成藏动力学两类不同成藏机制。  相似文献   
25.
沉积盆地超压系统演化、流体流动与成藏机理   总被引:47,自引:1,他引:47  
压实不均衡和生烃 ,特别是生气作用是可独立产生大规模超压的主要机制。根据超压顶面的几何形态、超压的发育机制、超压系统的内部结构和演化 ,可将超压系统分为封隔型超压系统和动态超压系统 2类。超压流体的排放包含 2个层次 :从超压泥岩向邻近输导层的初次排放和从超压系统向上覆常压系统或相对低超压系统的二次排放。封隔型超压系统的流体排放主要通过周期性顶部封闭层破裂进行 ,动态超压系统的流体排放可能主要通过断裂或其它构造薄弱带、超压顶面隆起点和超压系统内构造高点处的水力破裂集中进行。超压盆地油气倾向于在静水压力系统富集 ,并具有幕式充注特征 ,但超压系统既可发育商业型油藏 ,也可形成大型气藏。  相似文献   
26.
《Geodinamica Acta》2013,26(3-4):167-208
The Denizli graben-horst system (DGHS) is located at the eastern-southeastern converging tips of three well-identified major grabens, the Gediz, the Küçük Menderes and the Büyük Menderes grabens, in the west Anatolian extensional province. It forms a structural link between these grabens and the other three NE-NW-trending grabens—the Çivril, the Ac?göl and the Burdur grabens—comprising the western limb of the Isparta Angle. Therefore, the DGHS has a critical role in the evolutionary history of continental extension and its eastward continuation in southwestern Turkey, including western Anatolia, west-central Anatolia, and the Isparta Angle. The DGHS is a 7-28-km wide, 62-km long, actively growing and very young rift developed upon metamorphic rocks of both the Menderes Massif and the Lycian nappes, and their Oligocene-Lower Miocene cover sequence. It consists of one incipient major graben, one modern major graben, two sub-grabens and two intervening sub-horsts evolved on the four palaeotectonic blocks. Therefore, the DGHS displays different trends along its length, namely, NW, E-W, NE and again E-W.

The DGHS has evolved episodically rather than continuously. This is indicated by a series of evidence: (1) it contains two graben infills, the ancient graben infill and the modern graben infill, separated by an intervening angular unconformity; (2) the ancient graben infill consists of two Middle Miocene-Middle Pliocene sequences of 660 m thickness accumulated in a fluvio-lacustrine depositional setting under the control of first NNW-SSE- and later NNE-SSW-directed extension (first-stage extension), and deformed (folded and strike-slip faulted) by a NNE-SSW- to ENE-WSW-directed phase of compression in the latest Middle Pliocene, whereas the modern graben infill consists of 350-m thick, undeformed (except for local areas against the margin-bounding active faults), nearly flat-lying fanapron deposits and travertines of Plio-Quaternary age; (3) the ancient graben infill is confined not only to the interior of the graben but is also exposed well outside and farther away from the graben, whereas the modern graben infill is restricted to only the interior of the graben. These lines of evidence imply an episodic, two-stage extensional evolutionary history interrupted by an intervening compressional episode for the DGHS.

Both the southern and northern margin-bounding faults of the DGHS are oblique-slip normal faults with minor right- and/or left-lateral strike-slip components. They are mapped and classified into six categories, and named the Babada?, Honaz, A?a??da?dere, Küçükmal?da?, Pamukkale and Kaleköy fault zones, and composed of 0.5-36-km long fault segments linked by a number of relay ramps. Total throw amounts accumulated on both the northern and southern margin-bounding faults are 1,050 m and 2,080 m, respectively. In addition, the maximum width of the DGHS and the thickness of the crust beneath it are more or less same (~ 28 km). The total of these values indicate a vertical slip rate of 0.15-0.14 mm/year and averaging 7% extension for the asymmetrical DGHS.

The master faults of the Babada?, Honaz, Küçükmal?da?, Pamukkale and Kaleköy fault zones are still active and have a potential seismicity with magnitudes 6 or higher. This is indicated by both the historical (1703 and 1717 seismic events) to recent (1965, 1976, 2000 seismic events) earthquakes sourced from margin-bounding faults and some diagnostic morphotectonic features, such as deflected drainage system, degraded alluvial fans with apices adjacent to fault traces, back-tilting of fault-bounded blocks, and actively growing travertine occurrences. The kinematic analyses of main fault-slip-plane data, Upper Quaternary fissure ridges and focal-mechanism solutions of some destructive earthquakes clearly indicate that the current continental extension (second-stage extension) by normal faulting in the DGHS continues in a (mean) 026° to 034° (NNE-SSW) direction.

Detailed and recent field geological mapping, stratigraphy of the Miocene-Quaternary basins, palaeostress analysis of fault populations and main margin-bounding faults of these basins, extensional gashes to fissures, and focal-mechanism solutions of destructive earth-quakes that have occurred in last century strongly indicate that extension is not unidirectional and confined only to western Anatolia, but also continues farther east across the Isparta Angle and west-central Anatolia, up to the Salt Lake fault zone in the east and the inönü-Eski?ehir fault zone in the north-northeast. Therefore, the term “southwest Turkey extensional province” is proposed in lieu of the term “west Anatolian extensional province”.  相似文献   
27.
Sequence stratigraphy and syndepositional structural slope-break zones define the architecture of the Paleogene syn-rift, lacustrine succession in eastern China's Bohai Bay Basin. Jiyang, Huanghua and Liaohe subbasins are of particular interest and were our primary research objectives. Interpretation of 3D seismic data, well logs and cores reveals: One first-order sequence, 4 second-order sequences, and ten to thirteen third-order sequences were identified on the basis of the tectonic evolution, lithologic assemblage and unconformities in the subbasins of Bohai Bay Basin. Three types of syndepositional paleo-structure styles are recognized in this basin. They are identified as fault controlled, slope-break zone; flexure controlled, slope-break zone; and gentle slope.The three active structural styles affect the sequence stratigraphy. Distinct third-order sequences, within second-order sequences, have variable systems tract architecture due to structuring effects during tectonic episodes. Second-order sequences 1 and 2 were formed during rifting episodes 1 and 2. The development of the third-order sequences within these 2 second-order sequences was controlled by the active NW and NE oriented fault controlled, slope-break zones. Second-order sequence 3 formed during rifting episode 3, the most intense extensional faulting of the basin. Two types of distinctive lacustrine depositional sequence were formed during rifting episode 3: one was developed in an active fault controlled, slope-break zone, the other in an active flexure controlled, slope-break zone. Second-order sequence 4 was formed during the fourth episode of rifting. Syndepositional, fault- and flexure-controlled slope-break zones developed in the subsidence center (shore to offshore areas) of the basin and controlled the architecture of third-order sequences in a way similar to that in second-order sequence 3. Sequences in the gentle slope and syndepositional, flexure controlled slope-break zones were developed in subaerial region.Distribution of lowstand sandbodies was controlled primarily by active structuring on the slope-break zones, and these sandbodies were deposited downdip of the slope-break zones. Sand bodies within lowstand systems tracts have good reservoir quality, and are usually sealed by the shale sediments of the subsequent transgressive systems tract. They are favorable plays for stratigraphic trap exploration.  相似文献   
28.
Abstract. Episodic events have been shown to strongly affect structure and function of marine benthic ecosystems. Severe storms can have profound effects on the distribution of marine sediments which could, in turn, influence the development of benthic communities. The rich and diverse epibenthic communities on the United States mid-Atlantic continental shelf owe their existence to the presence of a complex sequence of rocky outcrops. An unusually strong storm struck this shelf system in March 1993. Two of these carbonate platforms had been characterized by moderate sediment cover for at least the previous two years, but bottom water velocities generated by this storm removed considerable amounts of sediment from these upper flat hardbottom habitats. Macroalgal cover on these platforms dramatically increased between 1992 and 1993 with the increased exposure of hard substrate for attachment. The edges of the outcrops (scarps and rubble ramps), which are usually free of sediment, maintained their dense algal cover. Settlement blocks placed in various sub-habitats showed little variation in algal cover among flat hardbottom and scarp areas during both years, indicating that available hard substrate habitat may be the primary limiting factor for algal growth on the North Carolina continental shelf. Since macroalgal meadows provide food and shelter for juvenile fish, the increase in critical habitat following these storms may have implications for recruitment of economically important fish species. Thus, indirect effects of episodic storms, i.e ., redistribution of sand bodies leading to algal meadow development over large spatial scales, may have important consequences for benthic community development and persistence in temperate reef systems.  相似文献   
29.
The northeastern part of the South China Sea is a special region in many aspects of its tectonics. Both recent drilling into the Mesozoic and new reflection seismic surveys in the area provide a huge amount of data, fostering new understanding of the continental margin basins and regional tectonic evolution. At least four half-grabens are developed within the Northern Depression of the Tainan Basin, and all are bounded on their southern edges by northwestward-dipping faults. One of the largest half-grabens is located immediately to the north of the Central Uplift and shows episodic uplift from the late Oligocene to late Miocene. Also during that period, the Central Uplift served in part as a material source to the Southern Depression of the Tainan Basin. The Southern Depression of the Tainan Basin is a trough structure with deep basement (up to 9 km below sealevel or 6 km beneath the sea bottom) and thick Cenozoic sedimentation (>6 km thick). Beneath the Southern Depression we identified a strong landward dipping reflector within the crustal layer that represents a significant crustal fault. This reflector coincides with a sharp boundary in crustal thicknesses and Moho depths. We show that the northeasternmost South China Sea basin, which may have undergone unique evolution since the late Mesozoic, is markedly different from the central South China Sea basin and the Huatung Basin, both geologically and geophysically. The Cenozoic evolution of the region was largely influenced by pre-existing weaknesses due to tectonic inheritance and transition. The South China Sea experienced multiple stages of Cenozoic extension.  相似文献   
30.
准噶尔盆地南缘侏罗系烃源岩排烃效率研究   总被引:1,自引:0,他引:1  
准噶尔盆地南缘下部成藏组合勘探日趋重要,其主力烃源岩生烃潜力和排烃效率的研究亟待加强。根据排烃门限理论,利用生烃潜力法建立了准噶尔盆地南缘侏罗系烃源岩的生、排烃模式,并计算了烃源岩的生烃量、排烃量和排烃效率。研究表明,准噶尔盆地南缘侏罗系泥质烃源岩和煤层的排烃门限对应的镜质组反射率均为0. 7 %。侏罗系烃源岩的总生烃量为3 973. 84 x 108t,总排烃量为1 402. 71 x108t,其中八道湾组烃源岩排烃量占总排烃量的69.85%。准噶尔盆地南缘侏罗系烃源岩的平均排烃效率为35. 30%,不同层系不同岩性烃源岩,其排烃效率明显不同,泥质烃源岩排烃效率远大于煤层。综合分析认为,准噶尔盆地南缘侏罗系烃源岩生、排烃量大,排烃效率较高,下部成藏组合以侏罗系烃源岩为主力烃源岩,具有良好的资源潜力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号