首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   5篇
  国内免费   4篇
大气科学   39篇
地球物理   21篇
地质学   12篇
海洋学   6篇
自然地理   3篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2013年   2篇
  2011年   1篇
  2009年   9篇
  2008年   6篇
  2007年   5篇
  2006年   6篇
  2005年   7篇
  2004年   8篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
排序方式: 共有81条查询结果,搜索用时 62 毫秒
61.
As part of the EUropean Cloud REsolving Modelling (EUCREM) model intercomparison project we compared the properties and development of stratocumulus as revealed by actual observations and as derived from two types of models, namely three-dimensional Large Eddy Simulations (LES) and one-dimensional Single Column Models (SCMs). The turbulence, microphysical and radiation properties were obtained from observations made in solid stratocumulus during the third flight of the first 'Lagrangian' experiment of the Atlantic Stratocumulus Transition Experiment (ASTEX). The goal of the intercomparison was to study the turbulence and microphysical properties of a stratocumulus layer with specified initial and boundary conditions.The LES models predict an entrainment velocity which is significantly larger than estimated from observations. Because the observed value contains a large experimental uncertainty no definitive conclusions can be drawn from this. The LES modelled buoyancy flux agrees rather well with the observed values, which indicates that the intensity of the convection is modelled correctly. From LES it was concluded that the inclusion of drizzle had a small influence (about 10%) on the buoyancy flux. All SCMs predict a solid stratocumulus layer with the correct liquid water profile. However, the buoyancy flux profile is poorly represented in these models. From the comparison with observations it is clear that there is considerable uncertainty in the parametrization of drizzle in both SCM and LES.  相似文献   
62.
A comprehensive planetary boundary-layer (PBL) and synoptic data set is used to isolate the mechanisms that determine the vertical shear of the horizontal wind in the convective mixed layer. To do this, we compare a fair-weather convective PBL with no vertical shear through the mixed layer (10 March 1992), with a day with substantial vertical shear in the north-south wind component (27 February). The approach involves evaluating the terms of the budget equations for the two components of the vertical shear of the horizontal wind; namely: the time-rate-of-change or time-tendency term, differential advection, the Coriolis terms (a thermal wind term and a shear term), and the second derivative of the vertical transport of horizontal momentum with respect to height (turbulent-transport term). The data, gathered during the 1992 STorm-scale Operational and Research Meteorology (STORM) Fronts Experiments Systems Test (FEST) field experiment, are from gust-probe aircraft horizontal legs and soundings, 915-MHz wind profilers, a 5-cm Doppler radar, radiosondes, and surface Portable Automated Mesonet (PAM) stations in a roughly 50 × 50 km boundary-layer array in north-eastern Kansas, nested in a mesoscale-to-synoptic array of radiosondes and surface data.We present evidence that the shear on 27 February is related to the rapid growth of the convective boundary layer. Computing the shear budget over a fixed depth (the final depth of the mixed layer), we find that the time-tendency term dominates, reflecting entrainment of high-shear air from above the boundary layer. We suggest that shear within the mixed layer occurs when the time-tendency term is sufficiently large that the shear-reduction terms – namely the turbulent-transport term and differential advection terms – cannot compensate. In contrast, the tendency term is small for the slowly-growing PBL of 10 March, resulting in a balance between the Coriolis terms and the turbulent-transport term. Thus, the thermal wind appears to influence mixed-layer shear only indirectly, through its role in determining the entrained shear.  相似文献   
63.
Only recently, medium intensity inflow events into the Baltic Sea have gained more awareness because of their potential to ventilate intermediate layers in the Southern Baltic Sea basins. With the present high-resolution model study of the Western Baltic Sea a first attempt is made to obtain model based realistic estimates of turbulent mixing in this area where dense bottom currents resulting from medium intensity inflow events are weakened by turbulent entrainment. The numerical model simulation which is carried out using the General Estuarine Transport Model (GETM) during nine months in 2003 and 2004 is first validated by means of three automatic stations at the Drogden and Darss Sills and in the Arkona Sea. In order to obtain good agreement between observations and model results, the 0.5×0.50.5×0.5 nautical mile bathymetry had to be adjusted in order to account for the fact that even at that scale many relevant topographic features are not resolved. Current velocity, salinity and turbulence observations during a medium intensity inflow event through the Øresund are then compared to the model results. Given the general problems of point to point comparisons between observations and model simulations, the agreement is fairly good with the characteristic features of the inflow event well represented by the model simulations. Two different bulk measures for mixing activity are then introduced, the vertically integrated decay of salinity variance, which is equal to the production of micro-scale salinity variance, and the vertically integrated turbulent salt flux, which is related to an increase of potential energy due to vertical mixing of stably stratified flow. Both measures give qualitatively similar results and identify the Drogden and Darss Sills as well as the Bornholm Channel as mixing hot spots. Further regions of strong mixing are the dense bottom current pathways from these sills into the Arkona Sea, areas around Kriegers Flak (a shoal in the western Arkona Sea) and north–west of the island of Rügen.  相似文献   
64.
During the Dynamics and Chemistry of the MarineStratocumulus (DYCOMS) experiment in July–August 1985, the NCAR Electra aircraft flew a series of flight legs just at the top of the marinestratocumulus cloud decks that cap the mixed layer off the coast of southernCalifornia. Because of the corrugated structure of the cloud-top, the aircraft, which was flown at a nearly constant level and adjusted only to maintain its altitude at the average cloud-top height, was alternately within and above the clouds – roughly half the time in each domain. These legs were used to examine the structure of the cloud-top by compositing the segments on either side of the cloud/clear-air interface, which was identified by the transitions of liquid water measured by the Forward Scattering Spectrometer Probe (either increasing or decreasing) through a threshold of 0.04 × 10-3 kg m-3.An equivalent vertical distance (EVD) from the cloud-top was obtained from the horizontal flight legs by estimating the average slope of the cloud-top from the cloud-top radiation temperature. The results show that a near discontinuity occurs in variables across cloud top over an EVD of 0.3 m, but that above this, the air has already been modified by boundary-layer air. Thus, cloud-top is not the limit of mixing of boundary-layer air. This mixing may extend to tens of metres or more. The bulk Richardson number in the vicinity of cloud-top increases from near zero within the cloud to about 1.2 at an EVD of 3–6 m above cloud. Fluctuations of the three velocity components within cloud are nearly equal; above cloud the vertical component structure function is about half the horizontal components. The scalar structure functions are about an order of magnitude higher above cloud than in cloud. The structure parameters of temperature and humidity measured just below cloud-top agree reasonably well with predicted values based on a previously-developed model for the clear convective boundary layer. Above cloud, the scalar structure parameters are much larger, but their interpretation is questionable, since this region does notcontain isotropic turbulence.  相似文献   
65.
《国际泥沙研究》2016,(3):251-256
The classic Engelund bed-load formula involves four oversimplified assumptions concerning the quantity of particles per unit bed area that can be potentially entrained into motion, the probability of sediment being entrained into motion at a given instant, the mean velocity of bed-load motion, and the dimen-sionless incipient shear stress. These four aspects are reexamined in the light of new findings in hydrodynamics, and a modified bed-load formula is then proposed. The modified formula shows promise as being reliable in predicting bed-load transport rates in a wide range of flow intensities.  相似文献   
66.
It is well-versed that transport occurrence is vital for in stream rehabilitation, river restoration and installment of sediment sampler on river beds. Current practice emulates the use of continuous pre-diction using reach-averaged approach. However, prediction of transport occurrence entails the use of binary model through the execution of logistic regression analysis. Bed load and turbulence data were physically measured at mountainous region with divergent surface bedform in its presence. The para-meterization and statistical approaches are treated in the similar fashion with multiple regression except for the test for model fit and model selection criterion. The parameters on near-bed turbulence char-acteristics at the entrainment threshold were assigned as independent variables containing 15 pre-dictors. Almost 80 models were generated by selecting the best possible combination in accordance with the statistical precaution of alleviating multicollinearity issue. It is postulated that the model containing shields stress in the form of turbulent kinetic energy (TKE) at vertical direction and fractional time for second quadrant provides better estimation of potential location for greatest sediment-entrainment;hence a high possibility for transport occurrence.  相似文献   
67.
The Smart Sediment Particle(SSP) instrumented with multiple sensors to obtain tri-axial linear accelerations is used for studying the mechanism of coarse grain entrainment. Three bed arrangements are tested to examine their influences on entrainment processes and the threshold force and impulse conditions. The SSP shows satisfactory precision to capture the imperceptible movement tendencies immediately(e.g., 0.15 s) after the dislodgement. The experimental results show that bed packing can signi...  相似文献   
68.
The parameterization of the dimensionless entrainment rate (w e /w *) versus the convective Richardson number (Ri δθ ) is discussed in the framework of a first-order jump model (FOM). A theoretical estimation for the proportionality coefficient in this parameterization, namely, the total entrainment flux ratio, is derived. This states that the total entrainment flux ratio in FOM can be estimated as the ratio of the entrainment zone thickness to the mixed-layer depth, a relationship that is supported by earlier tank experiments, and suggesting that the total entrainment flux ratio should be treated as a variable. Analyses show that the variability of the total entrainment flux ratio is actually the effect of stratification in the free atmosphere on the entrainment process, which should be taken into account in the parameterization. Further examination of data from tank experiments and large-eddy simulations demonstrate that the different power laws for w e /w * versus Ri δθ can be interpreted as the variability of the total entrainment flux ratio. These results indicate that the dimensionless entrainment rate depends not only on the convective Richardson number but also upon the total entrainment flux ratio.  相似文献   
69.
In the present study, an attempt is made to assess the atmospheric boundary-layer (ABL) depth over an urban area, as derived from different ABL schemes employed by the mesoscale model MM5. Furthermore, the relationship of the mixing height, as depicted by the measurements, to the calculated ABL depth or other features of the ABL structure, is also examined. In particular, the diurnal evolution of ABL depth is examined over the greater Athens area, employing four different ABL schemes plus a modified version, whereby urban features are considered. Measurements for two selected days, when convective conditions prevailed and a strong sea-breeze cell developed, were used for comparison. It was found that the calculated eddy viscosity profile seems to better indicate the mixing height in both cases, where either a deep convective boundary layer develops, or a more confined internal boundary layer is formed. For the urban scheme, the incorporation of both anthropogenic and storage heat release provides promising results for urban applications.  相似文献   
70.
This paper presents a one-dimensional steady-state model to investigate the sensitivity of the dynamics of sustained eruption columns to radius variations with height due to thermal expansion of the entrained air, and decreases in atmospheric pressure with height. In contrast to a number of previous models using an equation known as the entrainment assumption, the new model is based on similarity arguments to derive an equation set equivalent to the model proposed by Woods [Bull Volcanol 50:169–193, 1988]. This approach allows investigation of the effect of gas compressibility on the entrainment rate of ambient air, which has been little examined for a system in which a decrease in pressure significantly affects the density stratification of a compressible fluid. The new model provides results that include two end members: one in which the volume change within the eruption columns affects only the radial expansion without changing the vertical motion, and the other is the converse. The Woods [Bull Volcanol 50:169–193, 1988] model can be regarded as being between those two end members. The range of uncertainty arises because the extremely high temperature of discharged materials from a volcanic vent, and the exceptional terminal height of the eruption columns, allow significant expansion of the gas component in the eruption columns, making them behave differently from common turbulent plumes. This study indicates that the maximum height of the eruption columns is affected considerably by this uncertainty, particularly when the eruption columns extend above a height of 10 km, at which the pressure is about one-fourth the pressure at the ground surface. Column collapse may also be suppressed in wider parameter ranges than previously estimated. However, the uncertainty can be reduced by measuring column radii through a vertical profile during actual volcanic eruptions. Accordingly, this paper suggests that appropriate observation of eruption column shapes is essential for improving our understanding of the dynamics of eruption columns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号