首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   733篇
  免费   244篇
  国内免费   469篇
测绘学   10篇
大气科学   705篇
地球物理   185篇
地质学   144篇
海洋学   241篇
天文学   11篇
综合类   63篇
自然地理   87篇
  2024年   5篇
  2023年   11篇
  2022年   30篇
  2021年   34篇
  2020年   39篇
  2019年   44篇
  2018年   55篇
  2017年   59篇
  2016年   51篇
  2015年   54篇
  2014年   53篇
  2013年   87篇
  2012年   62篇
  2011年   44篇
  2010年   47篇
  2009年   59篇
  2008年   68篇
  2007年   64篇
  2006年   51篇
  2005年   72篇
  2004年   41篇
  2003年   58篇
  2002年   53篇
  2001年   43篇
  2000年   36篇
  1999年   33篇
  1998年   47篇
  1997年   19篇
  1996年   17篇
  1995年   15篇
  1994年   21篇
  1993年   23篇
  1992年   20篇
  1991年   11篇
  1990年   6篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有1446条查询结果,搜索用时 15 毫秒
731.
研究了北半球100hPa冬季遥相关现象,指出,北半球冬季100hPa存在PNA流型,它的波列与500hPa流型很接近,当厄尔尼诺发展到盛期(冬季)时,100hPa出现强PNA型,这种对应关系比500hPa好些,此外,还研究了厄尔尼发生、发展各阶段的100hPa低纬风场以及100hPa春,夏,秋,冬四季平均环流异常特征,发现在厄尔尼诺发生年春季,100hPa高度比反厄尔尼诺年大范围偏低,发生前的冬季  相似文献   
732.
Short-termClimaticFluctuationsinNorthAtlanticOscillationandFrequencyofCyclonicDisturbancesoverNorthIndianOceanandNorthwestPac...  相似文献   
733.
El Niño-La Niña循环的海-气耦合机制研究   总被引:1,自引:0,他引:1  
马开玉  泮益农  李骥 《气象学报》1995,53(4):461-470
利用1950—1987年2°×2°格点综合海-气资料(COADS),计算了赤道太平洋洋面(5°S—3°N)上逐月平均海温、气压、纬向风、比湿、云以及热量收支各分量的平均值和距平值,分析这些量的演变特征,得出:ElNino过程中,赤道太平洋洋面上气压梯度减小,东风减弱;赤道中、东太平洋洋面上空气中水汽和云量增加,洋面射入太阳辐射和有效长波辐射减少,感热和潜热交换加强,洋面净获得(损失)热量减少(增加);LaNina过程中,情形相反。最后概括了ElNino-LaNina循环的两种海-气耦合反馈机制。  相似文献   
734.
The role of halted “baroclinic modes” in the central equatorial Pacific is analyzed. It is found that dominant anomaly signals corresponding to “baroclinic modes” occur in the upper layer of the equatorial Pacific, in a two-and-a-half layer oceanic model, in assimilated results of a simple OGCM and in the ADCP observation of TAO. A second “baroclinic mode” is halted in the central equatorial Pacific corresponding to a positive SST anomaly while the first “baroclinic mode” propagates eastwards in the eastern equatorial Pacific. The role of the halted second “baroclinic mode” in the central equatorial Pacific is explained by a staged ocean-atmosphere interaction mechanism in the formation of El Ni?no: the westerly bursts in boreal winter over the western equatorial Pacific generate the halted second “baroclinic mode” in the central equatorial Pacific, leading to the increase of heat content and temperature in the upper layer of the central Pacific which induces the shift of convection from over the western equatorial Pacific to the central equatorial Pacific; another wider, westerly anomaly burst is induced over the western region of convection above the central equatorial Pacific and the westerly anomaly burst generates the first “baroclinic mode” propagating to the eastern equatorial Pacific, resulting in a warm event in the eastern equatorial Pacific. The mechanism presented in this paper reveals that the central equatorial Pacific is a key region in detecting the possibility of ENSO and, by analyzing TAO observation data of ocean currents and temperature in the central equatorial Pacific, in predicting the coming of an El Ni?no several months ahead.  相似文献   
735.
One of the fundamental questions concerning the nature and prediction of the oceanic states in the equatorial eastern Pacific is how the turnabout from a cold water state (La Ni?na) to a warm water state (El Ni?no) takes place, and vice versa. Recent studies show that this turnabout is directly linked to the interannual thermocline variations in the tropical Pacific Ocean basin. An index, as an indicator and precursor to describe interannual thermocline variations and the turnabout of oceanic states in our previous paper (Qian and Hu, 2005), is also used in this study. The index, which shows the maximum subsurface temperature anomaly (MSTA), is derived from the monthly 21-year (1980–2000) expendable XBT dataset in the present study. Results show that the MSTA can be used as a precursor for the occurrences of El Ni?no (or La Ni?na) events. The subsequent analyses of the MSTA propagations in the tropical Pacific suggest a one-year potential predictability for El Ni?no and La Ni?na events by identifying ocean temperature anomalies in the thermocline of the western Pacific Ocean. It also suggests that a closed route cycle with the strongest signal propagation is identified only in the tropical North Pacific Ocean. A positive (or negative) MSTA signal may travel from the western equatorial Pacific to the eastern equatorial Pacific with the strongest signal along the equator. This signal turns northward along the tropical eastern boundary of the basin and then moves westward along the north side of off-equator around 16N. Finally, the signal returns toward the equator along the western boundary of the basin. The turnabout time from an El Ni?no event to a La Ni?na event in the eastern equatorial Pacific depends critically on the speed of the signal traveling along the closed route, and it usually needs about 4 years. This finding may help to predict the occurrence of the El Ni?no or La Ni?na event at least one year in advance.  相似文献   
736.
Franck A. Audemard   《Tectonophysics》2006,424(1-2):19-39
This paper discusses the surface rupture of the Cariaco July 09, 1997 Ms 6.8 earthquake in northeastern Venezuela – located at 10.545°N and 63.515°W and about 10 km deep. The field reconnaissance of the ground breaks confirms that this event took place on the ENE–WSW trending onshore portion of the dextral El Pilar fault (between the Gulfs of Cariaco and Paria), which is part of the major wrenching system within the Caribbean–South America plate boundary zone. Dextral slip along this fault was further supported by the structural style of this rupture (en echelon right-lateral R shears connected by mole tracks at restraining stepovers) and by larger geometric complexities (pop-ups at Las Manoas and Guarapiche), as well as by the focal mechanism solutions determined for the event by several authors. This 1997 surface ruptre comprised two distinct sections, from west to east: (a) a main very conspicuous, continuous, 30-km-long, rather straight, 075°N-trending alignment of en echelon surface breaks, with a rather constant, purely dextral coseismic slip of about 25  cm, but reaching a maximum value of 40 cm slightly northwest of Pantoño; and (b) a secondary discontinuous, 10-km-long, boomerang-shaped rupture, with a maximum coseismic slip of 20 cm at Guarapiche. The onshore extent of the surface rupture totalled 36 km, but may continue westward underwater, as suggested by the very shallow aftershock seismicity. This aftershock activity also clearly defined the steep north dip of the fault plane along the western rupture, suggesting tectonic inheritance on this major fault.From many locals' accounts, the rupture seems to have propagated from Pantoño to the west (highly asymmetric bidirectionality). This suggests that earthquake nucleation happened at or near the Casanay–Guarapiche restraining bend and rupture quickly propagated westward, allowing only a small fraction to progress eastwards beyond the bend. Additionally, the large fraction of after-slip (or creep) released is to be related to such restraining bend, which seems to have partly locked slip during rupture.  相似文献   
737.
A continuous 36 year long record of semi-monthly temperature profiles from the central Strait of Georgia, British Columbia is used to examine low frequency variability and trends through the water column. Decomposition of temperature anomalies into empirical orthogonal functions shows that the dominant mode accounts for 78% of the variance, while the principal component associated with this mode (PC1) is dominated by fluctuations on interannual time scales. To relate the variability within the Strait to that occurring over the northeast Pacific, PC1 is compared with anomalies in local air temperature, sea surface temperatures off the west coast of Vancouver Island, and upper ocean temperatures along Line-P. These comparisons suggest that much of the interannual variability observed in the Strait of Georgia occurs in response to large-scale atmospheric forcing over the northeast Pacific. However, following tropical El Niño events there are significant anomalies associated with processes occurring along the coastal oceanic wave guide. The strongest event in the entire record, the remarkable negative temperature anomaly of winter 1978/1979, appears to be associated with a deep water intrusion that was forced locally.  相似文献   
738.
Since the 1970s it has been recognised that Southern Hemisphere samples have a lower radiocarbon content than contemporaneous material in the Northern Hemisphere. This interhemispheric radiocarbon offset has traditionally been considered to be the result of a greater surface area in the southern ocean and high-latitude deepwater formation. This is despite the fact that the El Niño-Southern Oscillation (ENSO) is known to play a significant role in controlling the interannual variability of atmospheric carbon dioxide by changing the flux of ‘old’ CO2 from the tropical Pacific. Here we demonstrate that over the past millennium, the Southern Hemisphere radiocarbon offset is characterised by a pervasive 80-yr cycle with a step shift in mean values coinciding with the transition from the Medieval Warm Period to the Little Ice Age. The observed changes suggest an ENSO-like role in influencing the interhemispheric radiocarbon difference, most probably modulated by the Interdecadal Pacific Oscillation, and supports a tropical role in forcing centennial-scale global climate change.  相似文献   
739.
A simple air–sea coupled model,the atmospheric general circulation model(AGCM) of the National Centers for Environmental Prediction coupled to a mixed-layer slab ocean model,is employed to investigate the impact of air–sea coupling on the signals of the Atlantic Multidecadal Oscillation(AMO). A regional coupling strategy is applied,in which coupling is switched off in the extratropical North Atlantic Ocean but switched on in the open oceans elsewhere. The coupled model is forced with warm-phase AMO SST anomalies,and the modeled responses are compared with those from parallel uncoupled AGCM experiments with the same SST forcing. The results suggest that the regionally coupled responses not only resemble the AGCM simulation,but also have a stronger intensity. In comparison,the coupled responses bear greater similarity to the observational composite anomaly. Thus,air–sea coupling enhances the responses of the East Asian winter climate to the AMO. To determine the mechanism responsible for the coupling amplification,an additional set of AGCM experiments,forced with the AMO-induced tropical SST anomalies,is conducted. The SST anomalies are extracted from the simulated AMO-induced SST response in the regionally coupled model. The results suggest that the SST anomalies contribute to the coupling amplification. Thus,tropical air–sea coupling feedback tends to enhance the responses of the East Asian winter climate to the AMO.  相似文献   
740.
The South Asian summer monsoon (SASM) precipitation is analyzed based on reanalysis datasets and historical simulation results from 23 climate models of the Coupled Model Intercomparison Project phase ...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号