首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   12篇
  国内免费   24篇
地球物理   6篇
地质学   153篇
海洋学   1篇
自然地理   3篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   6篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   39篇
  2012年   8篇
  2011年   3篇
  2010年   5篇
  2009年   7篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   6篇
  2004年   10篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1983年   2篇
排序方式: 共有163条查询结果,搜索用时 62 毫秒
101.
The Palaeoproterozoic Yerrida, Bryah and Padbury Basins record periods of sedimentation and magmatism along the northern margin of the Archaean Yilgarn Craton. Each basin is characterised by distinct stratigraphy, igneous activity, structural and metamorphic history and mineral deposit types. The oldest of these basins, the Yerrida Basin (ca 2200 Ma) is floored by rocks of the Archaean Yilgarn Craton. Important features of this basin are the presence of evaporites and continental flood basalts. The ca 2000 Ma Bryah Basin developed on the northern margin of the Yilgarn Craton during backarc sea‐floor spreading and rifting, the result of which was the emplacement of voluminous mafic and ultramafic volcanic rocks. During the waning stages of the Bryah Basin this mafic to ultramafic volcanism gave way to deposition of clastic and chemical sedimentary rocks. At a later stage, the Padbury Basin developed as a retroarc foreland basin on top of the Bryah Basin in a fold‐and‐thrust belt. This resulted from either the collision of the Pilbara and Yilgarn Cratons (Capricorn Orogeny) or the ca 2000 Ma westward collision of the southern part of the Gascoyne Complex and the Yilgarn Craton (Glenburgh Orogeny). During the Capricorn Orogeny the Bryah Group was thrust to the southeast, over the Yerrida Group. Important mineral deposits are contained in the Yerrida, Bryah and Padbury Basins. In the Yerrida Basin a large Pb–carbonate deposit (Magellan) and black shale‐hosted gossans containing anomalous abundances of Ba, Cu, Zn and Pd are present. The Pb–carbonate deposit is hosted by the upper units of the Juderina Formation, and the lower unit of the unconformably overlying Earaheedy Group. The Bryah and Padbury Basins contain orogenic gold, copper‐gold volcanogenic massive sulfides, manganese and iron ore. The origin of the gold mineralisation is probably related to tectonothermal activity during the Capricorn Orogeny at ca 1800 Ma.  相似文献   
102.
对昌宁—孟连带西区的两个地层问题进行了讨论。根据牙形刺和放射虫的发现将原定为拉巴组的塔拉弄—南雅条带的时代厘定为晚泥盆世至早石炭世 ,时代大致与南皮河群的弄巴组或“中区”的“上泥盆统”相当 ,它们之间的确切关系仍有待进一步研究。怕拍组实际上主体属晚二叠世晚期 ,仅顶部可能包含有少量下三叠统印度阶最底部的沉积。对怕拍组的研究证实了澜沧运动的存在 ,昌宁—孟连带自此开始了由海洋盆地向造山带的演变进程 ,这一过程持续达七千万年之久。  相似文献   
103.
b
The Kulgera Dyke Swarm consists of olivine tholeiites which have intruded late Proterozoic transitional-granulite gneisses and granites of the eastern Musgrave Block, in central Australia. Preliminary Rb/Sr results suggest that the dolerites were emplaced at 1054 ± 14 Ma. In addition, a Rb/Sr age of 1060 ± 10 Ma on a biotite from a pegmatite indicates thermal resetting of the country rock minerals during dyke emplacement. Palaeomagnetic investigations of the dykes yield a primary thermoremanent magnetization direction corresponding to a palaeomagnetic pole at 17S, 266E ( A 95= 12). In addition to this primary magnetization, an overprint component was present in many of the samples, providing a palaeomagnetic pole at 30S, 138E ( A 95= 24), which is similar to previous results from other central Australian rocks affected by the Alice Springs Orogeny. The results extend the area of influence of the Carboniferous Alice Springs Orogeny southward into the Musgrave Block. Further, the results provide no evidence for an earlier, Late Proterozoic, Petermann Orogeny affecting the Musgrave Block in the Kulgera region. However, the possibility that a Petermann Orogeny thermal overprint has been erased by the Alice Springs Orogeny cannot be dismissed.  相似文献   
104.
A polycyclic two-stage corona growth in the Iforas Granulitic Unit (Mali)   总被引:2,自引:0,他引:2  
Abstract Retrograde and prograde mineral assemblages from metapelitic and metabasic rocks of the Iforas Granulitic Unit (Mali) were generated by the superimposition of two granulite facies metamorphic events. They clearly result from a polycyclic evolution and can be related to a late Eburnean unroofing followed by a Pan-African burial.
Thermobarometry on Pan-African garnet-bearing assemblages yields ( P, T ) estimates of 620±50°C and 5± Ikbar. The nearly anhydrous conditions produced in the Eburnean appear to be the direct cause of the unusually lowtemperature granulite-facies metamorphism in the Pan-African. These P, T estimates are compared with those obtained on the underlying unit (Kidal Assemblage) upon which the Iforas Granulitic Unit was thrust. A P-T-t path, during the Pan-African orogeny, is proposed and discussed for both the Iforas Granulites and Kidal Assemblage.  相似文献   
105.
106.
印支造山运动是华南早中生代最重要的构造-岩浆事件,它在很大程度上影响了华南现今的地形和地貌特点。本文研究了南岭东段赣南早侏罗世东坑火山岩盆地沉积岩的碎屑锆石U-Pb年代,获得最显著的年龄峰值为196Ma、238Ma、364Ma和427Ma,表明该沉积岩并不是外来的震旦纪-寒武纪变质岩,而是早侏罗世裂谷火山盆地的沉积物。缺乏260~290Ma的锆石年龄,很可能反映物质为近源来源。通过与闽西南晚三叠世和华南内陆中-晚二叠世沉积砂岩中碎屑锆石年龄谱对比,反映华南印支早期(290~260Ma)岩浆活动主体在东南沿海地区,晚期(240~200Ma)主体发育在内陆地区。大量印支期侵入岩锆石的出现也很可能表明华南内陆印支造山带在~190Ma已经经历了相当程度的垮塌。  相似文献   
107.
Granite plutons of the Whypalla Supersuite in the Butchers Hill — Helenvale region of north Queensland were intruded into the upper crust of the Hodgkinson Formation during contractional deformation associated with the Permian‐Triassic Hunter‐Bowen Orogeny. A four‐stage structural history has been resolved for the area, with fabric overprinting relationships, porphyroblast‐matrix microstructural geometries and isotopic ages being consistent with granite emplacement during D4 shortening at ca 274 Ma. Microstructural relationships suggest the possibility of a minor syn‐D3 phase of granite emplacement. The deformation‐emplacement history of the Butchers Hill — Helenvale area is consistent with that recognised regionally for the Hodgkinson Province, indicating province‐wide synchronous syntectonic granite intrusion during a major phase of contractional deformation. Intense syn‐emplacement deformation partitioning was ongoing in the country rocks during progressive D4 and was associated with upward translation of country rock from the microscale to the macroscale along D4 cleavages and shears. Kinematic indicators show that this progressive uplift, at the scale of the area examined, was east‐side‐up.  相似文献   
108.
The Palaeozoic Alice Springs Orogeny was a major intraplate tectonic event in central and northern Australia. The sedimentological, structural and isotopic effects of the Alice Springs Orogeny have been well documented in the northern Amadeus Basin and adjacent exhumed Arunta Inlier, although the full regional extent of the event, as well as lateral variations in timing and intensity are less well known. Because of the lack of regional isotopic data, we take a sedimentological approach towards constraining these parameters, compiling the location and age constraints of inferred synorogenic sedimentation across a number of central and northern Australian basins. Such deposits are recorded from the Amadeus, Ngalia, Georgina, Wiso, eastern Officer and, possibly, Warburton Basins. Deposits are commonly located adjacent to areas of significant basement uplift related to north‐south shortening. In addition, similar aged orogenic deposits occur in association with strike‐slip tectonism in the Ord and southern Bonaparte Basins of northwest Australia. From a combination of sedimentological and isotopic evidence it appears that localised convergent deformation started in the Late Ordovician in the eastern Arunta Inlier and adjacent Amadeus Basin. Synorogenic style sedimentation becomes synchronously widespread in the late Early Devonian and in most areas the record terminates abruptly close to the end of the Devonian. A notable exception is the Ngalia Basin in which such sedimentation continued until the mid‐Carboniferous. In the Ord and Bonaparte Basins there is evidence of two discrete pulses of transcurrent activity in the Late Devonian and Carboniferous. The sedimentological story contrasts with the isotopic record from the southern Arunta Inlier, which has generally been interpreted in terms of continuous convergent orogenic activity spanning most of the Devonian and Carboniferous, with a suggestion that rates of deformation increased in the mid‐Carboniferous. Either Carboniferous sediments have been stripped off by subsequent erosion, or sedimentation outpaced accommodation space and detritus was transported elsewhere.  相似文献   
109.
http://www.sciencedirect.com/science/article/pii/S167498711100106X   总被引:1,自引:0,他引:1  
Reconstruction of the Neoproterozoic supercoutinent Rodinia shows near neighbour positions of the South Indian Cratons and Western Australian Cratons.These cratonic areas are characterized by extensive...  相似文献   
110.
《International Geology Review》2012,54(12):1523-1540
The Sanandaj–Sirjan Zone (SSZ) of western Iran is characterized by numerous granitoids of mainly calc-alkaline affinities. Several leucogranite and monzonite bodies crop out in the eastern Sanandaj. Whole-rock Rb–Sr isochrons demonstrate that the Mobarak Abad monzonite (MAM) formed in two phases at 185 and 131 Ma. Low 87Sr/86Sr(i) (i represents initial) and high 143Nd/144Nd(i) ratios, resulting in positive ?t Nd, imply that the source magma originated from a depleted mantle; large ion lithophile element (LILE) and light rare earth element (LREE) enrichments imply that slab fluid was involved in the evolution of the parent magma. Geochemical characteristics of the MAM rocks show an affinity with I- and A-type granites, and the positive values of ?t Nd (+2 to +6), confirm that the MAM represents juvenile granite. Therefore, the MAM rocks are different from Himalayan, Hercynian, and Caledonian granites. Based on the geology of granitic host rocks that form the protoliths of metamorphic rocks, it is likely that the mafic part of the MAM formed in an island arc setting on Neo-Tethyan oceanic crust during Early to Middle Jurassic time. Subsequent collision of the island arc with the western part of the SSZ occurred in the Late Jurassic to Early Cretaceous. Metamorphism, accompanied by partial melting, occurred during collision. Finally, leucogranite magmas of the young Mobarak Abad dikes and the Suffi Abad body were generated in this collision zone. This new model suggests a Late Jurassic–Early Cretaceous arc–continental collision before final closing of the Neo-Tethys.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号