首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1206篇
  免费   227篇
  国内免费   426篇
测绘学   10篇
大气科学   99篇
地球物理   219篇
地质学   1249篇
海洋学   150篇
天文学   5篇
综合类   44篇
自然地理   83篇
  2024年   8篇
  2023年   21篇
  2022年   30篇
  2021年   42篇
  2020年   60篇
  2019年   62篇
  2018年   46篇
  2017年   89篇
  2016年   63篇
  2015年   48篇
  2014年   107篇
  2013年   105篇
  2012年   94篇
  2011年   71篇
  2010年   59篇
  2009年   80篇
  2008年   93篇
  2007年   77篇
  2006年   96篇
  2005年   70篇
  2004年   77篇
  2003年   52篇
  2002年   43篇
  2001年   39篇
  2000年   52篇
  1999年   48篇
  1998年   32篇
  1997年   26篇
  1996年   25篇
  1995年   28篇
  1994年   21篇
  1993年   22篇
  1992年   24篇
  1991年   11篇
  1990年   15篇
  1989年   3篇
  1988年   7篇
  1987年   4篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1954年   1篇
排序方式: 共有1859条查询结果,搜索用时 328 毫秒
61.
The Proterozoic Eastern Ghats Mobile Belt along the east coast of India shares a thrusted lower contact with the surrounding cratons. The thrust, known as the Terrane Boundary shear zone, is associated with two large lateral ramps resulting in a curved outline on the northwestern corner of the mobile belt. The Eastern Ghats Mobile Belt is divided into two lithotectonic units, the Lathore Group and the Turekela Group, based on their lithological assemblages and deformational history. On the basis of published data from a Deep Seismic Sounding (DSS) profile of the Eastern Ghats crust, the Terrane Boundary Shear Zone is considered to be listric in nature and acts as the sole thrust between craton and mobile belt. The Lathore and Turekela Groups are nappes. With this structural configuration the NW part is described as a fold thrust belt. However, the thrusting postdates folding and granulite metamorphism that occurred in the Eastern Ghats, as in the Caledonide type of fold thrust belt of NW Scotland. The Terrane Boundary Shear Zone is interpreted to be contiguous with the Rayner-Napier boundary of the Enderby Land in a Gondwana assembly.  相似文献   
62.
The global climate changings at the end of Pleistocene led to extinction of the typical representatives of Mammoth fauna–mammoth, woolly rhinoceros, wild horse, bison, muskox, cave lion, etc.–on the huge territories of Northern Eurasia. Undoubtedly the Mammoth fauna underwent pressure from the Upper Paleolithic Man, whose hunting activity also could play the role in decreasing the number of mammoths and other representatives of megafauna (large mammals). Archaeological data testify that the typical representatives of Mammoth fauna were the Man's hunting objects only till the end of the Pleistocene. Their bone remains are not usually found on the settlements of Mesolithic Man. Formerly it was supposed that the megafauna of ‘Mammoth complex’ was extinct by the beginning of Holocene. Nevertheless the latest data testify that the global extinction of the Mammoth fauna was sufficiently delayed in the north of Eastern Siberia. In the 1990s some radiocarbon data testified that the mammoths on the Wrangel Island existed for a long time during the Holocene from 8000 till 3700 y. BP. The present radiocarbon data show that wild horses inhabited the north of Eastern Siberia (the lower stream of the Enissey river, the Novosibirskie Islands, the East Siberian sea-shore) 3000–2000 y. BP. Musk-oxen lived on the Taimyr Peninsula and the Lena River delta about 3000 y. BP. Some bison remains from Eastern Siberia belong to the Holocene. The following circumstances could promote the process of preservation of the Mammoth fauna representatives. The cool and dry climate of this region promotes the maintenance of steppe associations – habitats of those mammals. The Late Paleolithic and Mesolithic settlements are not found in the Arctic zone of Eastern Siberia from the Taimyr Peninsula to a lower stream of the Yana River; they are very rare in the basins of the Indigirka and Kolyma Rivers. So, the small number of the Stone Age hunting tribes on the North of Eastern Siberia was another factor in the long-term preservation of some Mammoth fauna representatives.  相似文献   
63.
The Kunavaram alkaline complex is a NE-SW trending elongate body located along a major lineament, the Sileru Shear Zone (SSZ) that is regarded as a Proterozoic suture related to Indo-Antarctica collision. The complex is hosted within migmatitic quartzofeldspathic gneisses, mafic granulites retrogressed to amphibolites, and quartzites. The structural evolution of the country rocks and the alkaline complex are similar. The first phase of deformation, D1, produces a pervasive segregation banding (S1) in all rock units within and outside the complex. A second deformation phase D2 isoclinally folded S1 along subvertical axial planes with shallow plunging axes. F2 isoclinal folds are ubiquitous in the country rocks and the eastern extremity of the complex. In the interior of the alkaline body, D2 strain decreases and S1 is commonly subhorizontal. While amphibolite to granulite facies conditions prevailed during deformation, post-D2 annealing textures testify to persisting high grade conditions. In the west, a NNE-SSW trending dextral shear zone with strike-slip sense (D3) truncates the complex. Within this shear zone, quartzofeldspathic country rocks are plastically deformed, while hornblende-K-feldspar assemblages of the complex are retrogressed to biotite and plagioclase. Warping related to D3 shears also resulted in fold interference patterns on the subhorizontal S1 foliation in low D2 strain domains. Based on its steep dip, north-easterly trend, and non-coaxial nature with dextral strike-slip sense, the D3 shear zone can be correlated with the SSZ. Since this shear zone, i.e., the SSZ, is not associated with primary igneous fabrics and resulted in solid state deformation of the complex, it cannot be considered as a conduit for alkaline magmatism, but is probably responsible for the post-tectonic disposition of the pluton.  相似文献   
64.
The Indo–Asian continental collision is known to have had a great impact on crustal deformation in south-central Asia, but its effects on the sublithospheric mantle remain uncertain. Studies of seismic anisotropy and volcanism have suggested that the collision may have driven significant lateral mantle flow under the Asian continent, similar to the observed lateral extrusion of Asian crustal blocks. Here we present supporting evidence from P-wave travel time seismic tomography and numerical modeling. The tomography shows continuous low-velocity asthenospheric mantle structures extending from the Tibetan plateau to eastern China, consistent with the notion of a collision-driven lateral mantle extrusion. Numerical simulations suggest that, at the presence of a low-viscosity asthenosphere, continued mass injection under the Indo–Asian collision zone over the past 50 My could have driven significant lateral extrusion of the asthenospheric mantle, leading to diffuse asthenospheric upwelling, rifting, and widespread Cenozoic volcanism in eastern China.  相似文献   
65.
Knickpoint behaviour is a key to understanding both the landscape responses to a base‐level fall and the corresponding sediment fluxes from rejuvenated catchments, and must be accommodated in numerical models of large‐scale landscape evolution. Knickpoint recession in streams draining to glacio‐isostatically uplifted shorelines in eastern Scotland is used to assess whether knickpoint recession is a function of discharge (here represented by its surrogate, catchment area). Knickpoints are identified using DS plots (log slope versus log downstream distance). A statistically significant power relationship is found between distance of headward recession and catchment area. Such knickpoint recession data may be used to determine the values of m and n in the stream power law, E = KAmSn. The data have too many uncertainties, however, to judge definitively whether they are consistent with m = n = 1 (bedrock erosion is proportional to stream power and KPs should be maintained and propagate headwards) or m = 0·3, n = 0·7 (bedrock incision is proportional to shear stress and KPs do not propagate but degrade in place by rotation or replacement). Nonetheless, the E Scotland m and n values point to the dominance of catchment area (discharge) in determining knickpoint retreat rates and are therefore more consistent with the stream power law formulation in which bedrock erosion is proportional to stream power. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
66.
Clastic sedimentary rocks record a number of in-formation about the compositions and paleoweathering conditions of the source areas, and the tectonic setting of the depositional basin[1―6]. The traditionallypetrological study commonly utilizes the major com-ponents (Quartz, Feldspar and Lithics) of the silici-clastic sedimentary rocks to investigate the source rock composition and tectonic setting[7]. However, thepetrological method is somewhat limited, because many of the mafic components f…  相似文献   
67.
68.
The conspicuous curved structures located at the eastern front of the Eastern Cordillera between 25° and 26° south latitude is coincident with the salient recognized as the El Crestón arc. Major oblique strike-slip faults associated with these strongly curved structures were interpreted as lateral ramps of an eastward displaced thrust sheet. The displacement along these oblique lateral ramps generated the local N–S stress components responsible for the complex hanging wall deformation. Accompanying each lateral ramp, there are two belts of strong oblique fault and folding: the upper Juramento River valley area and El Brete area.On both margins of the Juramento River upper valley, there is extensive map-scale evidence of complex deformation above an oblique ramp. The N–S striking folds originated during Pliocene Andean orogeny were subsequently or simultaneously folded by E–W oriented folds. The lateral ramps delimiting the thrust sheet coincident with the El Crestón arc salient are strike-slip faults emplaced in the abrupt transitions between thick strata forming the salient and thin strata outside of it. El Crestón arc is a salient related to the pre-deformational Cretaceous rift geometry, which developed over a portion of this basin (Metán depocenter) that was initially thicker. The displacement along the northern lateral ramp is sinistral, whereas it is dextral in the southern ramp. The southern end of the Eastern Cordillera of Argentina shows a particular structure reflecting a pronounced along strike variations related to the pre-deformational sedimentary thickness of the Cretaceous basin.  相似文献   
69.
In active landslides, the prediction of acceleration of movement is a crucial issue for the design and performance of warning systems. The landslide of Vallcebre in the Eastern Pyreenes, Spain, has been monitored since 1996 and data on rainfall, groundwater levels and ground displacements are measured on a regular basis. Displacements observed in borehole wire extensometers have shown an immediate response of the landslide to rainfall episodes. This rapid response is likely due to the presence of preferential drainage ways. The occurrence of nearly constant rates of displacement in coincidence with steady groundwater levels suggests the presence of viscous forces developed during the movement. An attempt to predict both landslide displacements and velocities was performed at Vallcebre by solving the momentum equation in which a viscous term (Bingham and power law) was added. Results show that, using similar rheological parameters for the entire landslide, computed displacements reproduce quite accurately the displacements observed at three selected wire extensometers. These results indicate that prediction of displacements from groundwater level changes is feasible.  相似文献   
70.
Following Early Cretaceous nappe stacking, the Eastern Alps were affected by late-orogenic extension during the Late Cretaceous. In the eastern segment of this range, a Late Cretaceous detachment separates a very low- to low-grade metamorphic cover (Graz Paleozoic Nappe Complex, GPNC) above a low- to high-grade metamorphic basement. Synchronously, the Kainach Gosau Basin (KGB) collapsed and subsided on top of the section.Metamorphism of organic material within this section has been investigated using vitrinite reflectance data and Raman spectra of extracted carbonaceous material. In the southern part of the GPNC, vitrinite reflectance indicates a decrease in organic maturity towards the stratigraphic youngest unit. The remaining part of the GPNC is characterized by an aureole of elevated vitrinite reflectance values and Raman R2 ratios that parallels the margins of the GPNC. Vitrinite reflectance in the KGB shows a steep coalification gradient and increases significantly towards the western basin margin. The observed stratigraphic trend in the southern GPNC is a result of deep Paleozoic to Early Cretaceous burial. This maturity pattern was overprinted along the margins by advective heat and convective fluids during Late Cretaceous to Paleogene exhumation of basement rocks.During shearing, the fault zone was heated up to ca. 500 °C. This overprint is explained by a two-dimensional thermal model with a ramp-flat fault geometry and a slip rate of 1 to 1.5 cm/year during 5 Ma fault movement. The collapse basin above the detachment subsided in a thermal regime which was characterized by relaxing isotherms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号