首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1210篇
  免费   228篇
  国内免费   426篇
测绘学   7篇
大气科学   98篇
地球物理   216篇
地质学   1254篇
海洋学   149篇
天文学   7篇
综合类   46篇
自然地理   87篇
  2024年   8篇
  2023年   21篇
  2022年   31篇
  2021年   43篇
  2020年   59篇
  2019年   61篇
  2018年   46篇
  2017年   91篇
  2016年   63篇
  2015年   48篇
  2014年   105篇
  2013年   109篇
  2012年   94篇
  2011年   71篇
  2010年   57篇
  2009年   80篇
  2008年   95篇
  2007年   75篇
  2006年   96篇
  2005年   74篇
  2004年   75篇
  2003年   53篇
  2002年   44篇
  2001年   39篇
  2000年   50篇
  1999年   48篇
  1998年   32篇
  1997年   26篇
  1996年   25篇
  1995年   27篇
  1994年   21篇
  1993年   24篇
  1992年   23篇
  1991年   11篇
  1990年   15篇
  1989年   3篇
  1988年   7篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1954年   1篇
排序方式: 共有1864条查询结果,搜索用时 406 毫秒
41.
The Wadi Hafafit Complex (WHC) is an arcuate belt of orthogneisses, migmatites and other high-grade metamorphic rocks, which marks the boundary between the Central Eastern and the South Eastern Deserts of Egypt. In the WHC, gneissic meta-gabbro outlines macroscopic fold interference patterns characterized by elliptical to irregular culminations cored by gneissic meta-tonalite to meta-trondhjemite. The five main culminations of the WHC have previously been labeled A (most northerly), B, C, D and E (most southerly). A detailed structural investigation of B, C, D and E reveals that these structures are a result of the interference of four macroscopic fold phases, the first three of which may represent a single deformation event. The first folding involved sheath-like fold nappes, which were transported to the N or NW, assisted by translation on gently dipping mylonite zones. The regional gneissosity and mineral extension lineations formed during this folding event. The fold nappes were deformed by mainly open upright small macroscopic and mesocopic folds with approximately NE-trending hinges. As a probable continuation of the latter folding, the sheaths were buckled into large macroscopic folds and monoclines with the same NE-trends. The fourth macroscopic folding resulted from shortening along the NE–SW direction, producing mainly NW–SE-trending upright gently plunging folds. Gravitative uplift is disputed as a component of the deformation history of the WHC. The peculiarities of the fold interference pattern result from the interesting behaviour of sheath folds during their refolding.  相似文献   
42.
43.
As a legacy of the centrally planned economy, the economies in transition of Central and Eastern Europe (CEE) have a unique potential to reduce their greenhouse gas emissions through the improvement in their high energy intensities. Since much of this `low-hanging fruit' in energy-efficiency improvements can be highly cost-effective, many developed countries facing difficulties in meeting their greenhouse gas (GHG) emission targets domestically are eager to find such opportunities in the CEE region. Therefore, studies analysing the potentials and costs of carbon dioxide reduction through technology improvement in the region have come into the limelight. While there are a few excellent studies in the region aimed at analysing climate change abatement potentials, they all embark on different assumptions, methodologies and boundary conditions. It is hence difficult, if not impossible, to compare and analyse the results of these studies across different authors, countries or time horizons. Consequently, the purpose of this paper is to place four leading studies on GHG mitigation through technology improvement from the CEE region into an internationally comparable framework. Four studies were selected from three countries, Poland, Hungary and Estonia, which are all the results of major national and international efforts to assess costs and potentials of GHG reduction. The paper places their assumptions, methods and final results into a framework which enables policy-makers and project designers to compare these across geographical and technological boundaries. Since other studies from around the globe have been analysed in this framework in the literature, this paper provides a vehicle for the findings of these four studies to be compared to others worldwide. In addition, the paper highlights a few areas where similar studies to be completed in the future in the region may be enhanced by incorporating features used in GHG mitigation research in other parts of the world. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
44.
窦润吾 《甘肃地质》2003,12(1):92-96
陇东地区是黄河上游水土流失严重区 ,也是国家重点治理的地区之一。由于特殊的岩土体的存在 ,加重了这一地区水土流失作用的危害性。本文通过水土流失现象与地质作用的关系进行偿试性探讨 ,旨在从中找到防治水土流失的有效措施 ,开展治理工作  相似文献   
45.
洪大卫  王涛  童英  王晓霞 《地学前缘》2003,10(3):231-256
近年来的研究证实 ,华北地台和大别—苏鲁造山带的中生代花岗岩与同时代的镁铁质超镁铁质岩有类似的Sr、Nd同位素特点 ,许多花岗岩和火山岩还具有类似埃达克岩的地球化学性质。在此基础上 ,根据现已积累的大量Sr、Nd同位素资料 ,从整个华北地台岩石圈的角度论证了中生代岩石圈地幔富集的性质、富集地幔发生的时代及其形成机制 ,进而探讨了岩浆活动的动力学机制 ,指出本区岩石圈富集地幔的形成是在Pangea超大陆裂解时岩石圈大规模拆沉减薄 ,被拆沉的太古宙古老地壳重循环进入地幔改变了地幔成分所致 ,说明超大陆裂解、岩石圈大规模拆沉减薄和富集地幔形成之间有密切的成因联系 ,超大陆裂解伴随着大陆地壳生长和消亡 (重循环 )的大体平衡。结合全球地震层析资料 ,进一步探讨了由俯冲大洋残片转化的下地壳同古老克拉通地壳物质在花岗岩源区中的重要意义。  相似文献   
46.
对土屋地区干旱荒漠景观地球化学条件和勘查地球化学方法进行了分析,对比研究了不同比例尺地球化学异常特征及对矿床的反映能力,指出了该区铜元素是预测铜矿的最重要的指示元素,论证了在区域铜高背景区和异常区开展1:5万化探是进一步定性、定位预测矿区、矿床的重要环节,提出了东天山地区经济、有效的地球化学勘查和异常查证方法技术组合。  相似文献   
47.
A portion of the aeromagnetic anomaly map of India, from 170 to 200 N and 78o to 84o E has been analysed to understand the tectonics of the region. The distribution of magnetic sources in the study region are clearly brought out in the analytic signal map and found to be associated with charnockitic rocks, iron formation and trap flows. The Godavari Graben is devoid of any magnetic sources. High-grade charnockitic rocks on surface and sub-surface, flank the shoulders of the Godavari Graben on either side. From the analysis of magnetic data, Sileru Shear Zone (SSZ) is identified as the contact of the Bastar craton and the Eastern Ghat Mobile Belt (EGMB). The Eastern Ghat is divided into two blocks: Block-N north of Srikakulam is devoid of magnetic sources while the charnockitic rocks are the main magnetic carriers in Block-S. The difference in magnetic characteristics of the two blocks has been attributed to the difference in metamorphic history. Block-N has an over print of amphibolite facies metamorphism while Block-S to the south depicts granulite facies metamorphism. The Euler solutions within the EGMB shows that the magnetic sources along SSZ is shallower than the south east implying that the exhumation process in the EGMB has a differential rate.  相似文献   
48.
The stability of the landslide of Vallcebre has been evaluated by means of a GIS. The landslide mechanism is a translational failure which has been analysed as an infinite slope. Soil strength parameters and groundwater conditions are obtained from laboratory tests and monitoring devices. Geometric parameters necessary to compute the factor of safety at each individual cell are generated by interpolation from the boreholes present in the landslide. The results have been checked with the actual behaviour of the landslide and are consistent. The comparison between a conventional slope stability analysis and the GIS-based approach gives similar results, showing the feasibility of the latter.  相似文献   
49.
Oblique convergence since the Early Cenozoic between the northward-moving Australian plate, westward-moving Pacific plate and almost stationary Eurasian plate has created a world-ranking tectonic zone in the eastern Indonesia–New Guinea–Southwest Pacific region (Tonga–Sulawesi megashear) that is notorious for its complex mix of tectonic styles and terrane juxtapositions. Unlike an ancient analog—the Mesozoic–Cenozoic Cordillera of North America—palaeomagnetic constraints on terrane motions in the zone are few. To improve the framework of quantitative control on such motions and therefore our understanding of the development of the zone, results of a palaeomagnetic study in the Highlands region of Papua New Guinea (PNG), in the southern part of the New Guinea Orogen, are reported. The study yields new insights into terrane tectonics along the Australian craton's active northern margin and confirms the complexity of block rotations to be expected at the local scale in tectonically intricate zones. The study is based on more than 500 samples (21 localities) collected from an interior and an exterior zone of New Guinea's central cordillera. The two zones are separated by the Tahin and Stolle–Lagaip–Kaugel Fault zones and collectively represent the para-autochthonous northern margin of the Australian craton. Samples from the interior zone, which in the study area comprises a cratonic spur of uncertain—probably displaced—origin, come from Triassic to Miocene sediments and subordinate volcanics of the Kubor Anticline, Jimi Terrane, and Yaveufa Syncline (16 localities) in the central and eastern Highlands. Samples from the exterior zone, which represent a basement-involved, Pliocene foreland fold-and-thrust belt, come from Middle Eocene to Middle Miocene carbonates and clastics (five localities) in the southern Highlands of the Papuan Fold Belt. Results permit us to constrain the tectonic evolution of the two zones palaeomagnetically. Using mainly thermal demagnetization techniques, three main magnetic components have been identified in the collection: (1) a recent field overprint of both normal and reverse polarity; (2) a pervasive overprint of mainly normal polarity that originated during extensive Middle to Late Miocene intrusive activity in the central cordillera; and (3) a primary component which has been identified in only 7 of the 21 localities (5 of 11 stratigraphic units represented in the collection). All components show patterns of rotation that are consistent within the zones, but differ between them. In the interior zone (central and eastern Highlands), large-scale counterclockwise rotations of between 30°+ and 100°+ have been established throughout the Kubor Anticline and Jimi Terrane, with some clockwise rotation present in the southern part of the Yaveufa Syncline. In contrast, in the Mendi area of the exterior zone (southern Highlands), clockwise rotations of between 30°+ and 50°+ can be recognized. These contrasting rotation patterns across the Tahin and Stolle–Lagaip–Kaugel Fault zones indicate decoupling of the two tectonic zones, probably along basement-involved faults. The clockwise rotations in the southern Highlands of the Papuan Fold Belt are to be expected from its structural grain, and are probably governed by regional basement faults and transverse lineaments. In contrast, the pattern of counterclockwise rotations in the Kubor Anticline–Jimi Terrane cratonic spur of the central and eastern Highlands was unexpected. The pattern is interpreted to result from non-rigid rotation of continental terranes as they were transported westward across the northeastern margin of the Australian craton. This margin became reorganised after the Middle Miocene, when the steadily northward-advancing Australian craton impinged into the westward-moving Pacific plate/buffer-plate system. Transpressional reorganisation under the influence of the sinistral Tonga–Sulawesi megashear became enhanced with Mio-Pliocene docking, and subsequent southward overthrusting, of the Finisterre Terrane onto the northeastern margin of the Australian craton.  相似文献   
50.
Wencai Yang   《Tectonophysics》2003,369(3-4):219-230
Recent 24 s deep seismic reflection records revealed five flat reflectors in the lithospheric mantle in Eastern China. With increasing depth, they are named M1 to M5 and can be seen on both field single-shot and stacked records. Reflector M1 corresponds to the Moho discontinuity, whereas M5 may be the reflection from the bottom of the current lithosphere, which is about 78 km deep according to geothermal measurements. The other three reflectors seem peculiar and might result from interactions between the lithosphere and deeper mantle. Based on lithological and geochemical data, it is suggested that the lithosphere has been thinned from about 150 km to about 60 km in the Late Mesozoic, and then has been thickened to about 78 km during the Cenozoic. The thinning process produced a granulite layer in the old lower crust caused by magmatic underplating, whereas an eclogite layer formed beneath owing to the subduction of the Paleo-Tethys and Yangtze Craton during the Permian and Early Mesozoic. Reflector M2 at about 12 s two-way traveltime (TWT) might result from the Paleozoic Moho, which represents the boundary between the previous granulite and eclogite facies. Reflector M3 at about 14 s might correspond to the bottom of the eclogite layer, beneath which the old lithospheric mantle remained. The old and the newly developed mantle may have different compositions, resulting in reflector M4. The multi-layered mantle reflectors demonstrate a mantle structure that possibly correlates with the lithospheric thinning process that occurred in Eastern China during the Late Mesozoic. The discovery of multi-layered mantle reflectors in the studied areas indicates a high heterogeneity of the upper mantle. Reflection seismology with improved technology, together with velocity and resistivity imaging and rock-physics measurements, can provide more details of the heterogeneity and related dynamic processes that occurred in the lithospheric mantle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号