The uppermost Cretaceous (upper Campanian-Maastrichtian) pelagic successions from the Malatya Basin (NW Malatya, eastern Anatolia) were studied by 688 samples, which were collected from five stratigraphic sections in the Hekimhan area. The pelagic deposits conformably overlie rudist bearing shallow-water limestones and are overlain conformably by Maastrichtian dolomites and unconformably by Paleocene-Eocene deposits, respectively.The pelagic successions in the Hekimhan area comprise the Kösehasan Formation at the base and the Zorbehan Formation at the top and reach up to 1100 m in thickness. The Kösehasan Formation rests over the neritic rudist-bearing limestones of the Güzelyurt Formation along a sharp contact and consists mainly of flysch-type sandstone-mudstone alternation with complete and partial Bouma sequences. The carbonate content of abundant planktonic foraminifera and nannoplankton-bearing 980-m-thick succession increases upwards and the formation passes gradually to the clayey limestones and marlstones of the Zorbehan Formation to the top. Occurrences of nannoplankton Lithraphidites quadratus Bramlette and Martini and Micula praemurus (Bukry) in the first beds of the Kösehasan Formation indicate that the age of the Kösehasan Formation and overlying Zorbehan Formation is of late Maasthrichtian. Another late Maastrichtian taxa Cribrosphaerella daniae Perch-Nielsen and Arkhangelskiella maastrichtiana Burnett are observed from the lowermost part of the succession. Maastrichtian planktonic foraminifera such as Contusotruncana walfischensis (Todd) and Globotruncanita pettersi (Gandolfi) were recorded through the successions. Although planktonic foraminifera are diverse and abundant particularly in the Kösehesan Formation, index late Maasthrichtian species were not encountered. Campanian and Santonian-Campanian planktonic foraminifera, e.g. Radotruncana calcarata (Cushman) and Globotruncanita elevata (Brotzen), obtained particularly from the lower part of the succession and calcareous nannofossils such as Broinsonia parca parca Bukry, Reinhardtites anthophorus (Deflanre) and Eiffellithus eximius (Stover) are interpreted as reworked from older strata. Trace fossils are common throughout the succession.Rareness of planktonic foraminifera and nannoplankton in the uppermost part of the succession (Zorbehan Formation) indicates maximum shallowing of the latest Maastrichtian sea in this part of the basin. Rare echinoids, bivalves and ammonites are observed in that part of the sequence.The obtained data indicate that sediment accumulation rate of the pelagic deposits is rather high and about 27.5 cm/ky for this part of the basin. Changes in thickness of the formations along short distances in the five stratigraphic sections analysed in this study should be related to the diachroneity of the depositional and erosional events. 相似文献
This study focuses on the Jurassic (Huayacocotla and Pimienta Formations) and Upper Cretaceous (Méndez Formation) shales from the Molango Region, Hidalgo, Mexico. In this article, we discuss the mineralogy, major, and trace element geochemistry of the Mesozoic shales of Mexico. The goal of this study is to constrain the provenance of the shales, which belong to two different periods of the Mesozoic Era and to understand the weathering conditions and tectonic environments of the source region. 相似文献
The conspicuous curved structures located at the eastern front of the Eastern Cordillera between 25° and 26° south latitude is coincident with the salient recognized as the El Crestón arc. Major oblique strike-slip faults associated with these strongly curved structures were interpreted as lateral ramps of an eastward displaced thrust sheet. The displacement along these oblique lateral ramps generated the local N–S stress components responsible for the complex hanging wall deformation. Accompanying each lateral ramp, there are two belts of strong oblique fault and folding: the upper Juramento River valley area and El Brete area.On both margins of the Juramento River upper valley, there is extensive map-scale evidence of complex deformation above an oblique ramp. The N–S striking folds originated during Pliocene Andean orogeny were subsequently or simultaneously folded by E–W oriented folds. The lateral ramps delimiting the thrust sheet coincident with the El Crestón arc salient are strike-slip faults emplaced in the abrupt transitions between thick strata forming the salient and thin strata outside of it. El Crestón arc is a salient related to the pre-deformational Cretaceous rift geometry, which developed over a portion of this basin (Metán depocenter) that was initially thicker. The displacement along the northern lateral ramp is sinistral, whereas it is dextral in the southern ramp. The southern end of the Eastern Cordillera of Argentina shows a particular structure reflecting a pronounced along strike variations related to the pre-deformational sedimentary thickness of the Cretaceous basin. 相似文献
The VRANCEA99 seismic refraction experiment is part of an international and multidisciplinary project to study the intermediate depth earthquakes of the Eastern Carpathians in Romania. As part of the seismic experiment, a 300-km-long refraction profile was recorded between the cities of Bacau and Bucharest, traversing the Vrancea epicentral region in NNE–SSW direction.
The results deduced using forward and inverse ray trace modelling indicate a multi-layered crust. The sedimentary succession comprises two to four seismic layers of variable thickness and with velocities ranging from 2.0 to 5.8 km/s. The seismic basement coincides with a velocity step up to 5.9 km/s. Velocities in the upper crystalline crust are 5.9–6.2 km/s. An intra-crustal discontinuity at 18–31 km divides the crust into an upper and a lower layer. Velocities within the lower crust are 6.7–7.0 km/s. Strong wide-angle PmP reflections indicate the existence of a first-order Moho at a depth of 30 km near the southern end of the line and 41 km near the centre. Constraints on upper mantle seismic velocities (7.9 km/s) are provided by Pn arrival times from two shot points only. Within the upper mantle a low velocity zone is interpreted. Travel times of a PLP reflection define the bottom of this low velocity layer at a depth of 55 km. The velocity beneath this interface must be at least 8.5 km/s.
Geologic interpretation of the seismic data suggests that the Neogene tectonic convergence of the Eastern Carpathians resulted in thin-skinned shortening of the sedimentary cover and in thick-skinned shortening in the crystalline crust. On the autochthonous cover of the Moesian platform several blocks can be recognised which are characterised by different lithological compositions. This could indicate a pre-structuring of the platform at Mesozoic and/or Palaeozoic times with a probable active involvement of the Intramoesian and the Capidava–Ovidiu faults. Especially the Intramoesian fault is clearly recognisable on the refraction line. No clear indications of the important Trotus fault in the north of the profile could be found. In the central part of the seismic line a thinned lower crust and the low velocity zone in the uppermost mantle point to the possibility of crustal delamination and partial melting in the upper mantle. 相似文献
A mountainous terrain, the eastern Pontide tectonic belt, located in northeastern Turkey, contains more than 60 known volcanogenic massive sulfide (VMS) deposits that differ in reserves (0.1–30 million tonnes) and grades. Soil geochemistry is conventionally used in exploration programs to discover concealed VMS deposits in the region. In the present study, Pb and As element pair were used as pathfinder elements to investigate the relationship of their anomalies to a completely delineated ore deposit (Killik VMS deposit) in an orientation survey that served as a natural physical model. Two hundred forty soil samples were analyzed in the present study. The two elements, which represent the opposite ends of the mobility range, revealed high contrast and overlapped each other at the location of the ore deposit due to enhancement of the anomalies by hydromorphic dispersion, which is an indication that soil samples would produce reliable results. The successful delineation of the deposit is remarkable considering the rough topography and the climatic limitations. Previously the extremely moist and temperate climate was thought to cause excessive leaching of the trace element pathfinders from the ore deposits to produce extensive anomalies usually extending away from the mineralization thus, leading to erroneous results and/or extensive anomalous areas. But the present research has shown that the method can be used effectively if the sampling and data evaluation is carefully conducted. 相似文献