首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2979篇
  免费   658篇
  国内免费   1221篇
测绘学   15篇
大气科学   212篇
地球物理   462篇
地质学   3205篇
海洋学   162篇
天文学   6篇
综合类   126篇
自然地理   670篇
  2024年   18篇
  2023年   58篇
  2022年   120篇
  2021年   124篇
  2020年   142篇
  2019年   177篇
  2018年   159篇
  2017年   187篇
  2016年   175篇
  2015年   149篇
  2014年   223篇
  2013年   235篇
  2012年   229篇
  2011年   185篇
  2010年   156篇
  2009年   219篇
  2008年   221篇
  2007年   202篇
  2006年   228篇
  2005年   201篇
  2004年   219篇
  2003年   156篇
  2002年   158篇
  2001年   124篇
  2000年   139篇
  1999年   133篇
  1998年   105篇
  1997年   78篇
  1996年   56篇
  1995年   65篇
  1994年   51篇
  1993年   48篇
  1992年   43篇
  1991年   17篇
  1990年   19篇
  1989年   8篇
  1988年   12篇
  1987年   5篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1954年   1篇
排序方式: 共有4858条查询结果,搜索用时 31 毫秒
51.
祁连山北缘—河西走廊西段地处青藏高原东北缘,是我国新构造活动最强烈的地区之一。通过野外对研究区主要活动断裂的调查研究、结合年代学测试和综合分析,认为祁连山北缘—河西走廊西段地区的旱峡—大黄沟断裂、玉门断裂、新民堡断裂和阴洼山断裂都是晚更新世至全新世活动断裂。旱峡—大黄沟断裂形成于中新世晚期,一直活动至今;玉门断裂形成于上新世早期,在距今7.6ka左右和3.2ka左右发生过2次强烈的新构造活动(古地震),也是2002年玉门地震的发震断裂;阴洼山断裂形成于上新世晚期(3.0Ma左右),在距今19.9~21.0ka、8.6~10.0ka、4.1~5.0ka发生过3次强烈的新构造活动,也可能是1785年惠民堡(现新民堡)地震的发震断裂;但是位于近盆地中心的新民堡断裂形成时代明显晚的多,起始于中更新世晚期(0.17Ma左右),在距今28.3ka、4.4ka和1.2ka左右发生过强烈的3次新构造活动。在运动形式上,上述4条断裂均为自南南西向北北东的逆冲推覆。在变形性质上,新民堡断裂以非地震性的蠕滑为主,其他3条断裂主要为地震性的粘滑变形。在祁连山北缘—河西走廊西段的北北东剖面上,逆冲推覆断裂表现为前展-后展复合发育模式,即形成时代最新的是位于酒西盆地中心的新民堡断裂,在酒西盆地中心以南部分的剖面中断裂发育为前展式,由祁连山腹地向河西走廊盆地中心断裂形成时代越来越新,而酒西盆地中心以北部分的剖面中断裂发育为后展式,即从盆地中心到盆地北缘断裂形成时代越来越老。  相似文献   
52.
The Cretaceous-Paleogene granites of the Eastern Sikhote Alin volcanic belt (ESAVB) and Late Cretaceous granitoids of the Tatibin Series (Central Sikhote Alin) are subdivided into three groups according to their oxygen isotope composition: group I with δ18O from +5.5 to +6.5‰, group II with δ18O from +7.6 to +10.2‰, and group III with less than +4.5‰. Group I rocks are similar in oxygen isotope composition to that of oceanic basalts and can be derived by melting of basaltic crust. Group II (rocks of the Tatibin Series) have higher δ18O, which suggests that their parental melts were contaminated by sedimentary material. The low 18O composition of group III rocks can be explained by their derivation from 18O-depleted rocks or by subsolidus isotopic exchange with low-18O fluid or meteoric waters. The relatively low δ18O and 87Sr/86Sr in the granitoids of Primorye suggest their derivation from rocks with a short-lived crustal history and can result from the following: (1) melting of sedimentary rocks enriched in young volcanic material that was accumulated in the trench along the transform continental margin (granites of the Tatibin Series) and (2) melting of a mixture of abyssal sediments, ocean floor basalts, and upper mantle in the lithospheric plate that subsided beneath the continent in the subduction zone (granites of the ESAVB).  相似文献   
53.
东秦岭中部奥陶系-志留系界线地层及腕足动物群   总被引:1,自引:0,他引:1  
许汉奎 《地层学杂志》1996,20(3):165-174
东秦岭中部晚奥陶世和早志留世地层分布较广,化石较丰富,尤其是腕足类,分为寺岗组、石燕河组、刘家坡组和张湾组。曾庆銮等(1993)根据腕足类及其群落的更替,把石燕河组和刘家坡组归於早志留世,因而引起较大争论。本文据岩性将寺岗组和石燕河组分别改称为石燕河组下段和上段,并据腕足类化石认为石燕河组和刘家坡组应归於晚奥陶世、张湾组为早志留世;另据上述地层生物群落的特征及群落的更替,认为从石燕河组到刘家坡组,以及刘家坡组至张湾组恰好反映了全球冰期引起的晚奥陶世海退和早志留世冰期结束引起的海侵,故本区奥陶系-志留系界线宜划在刘家坡组和张湾组之间。  相似文献   
54.
大别山榴辉岩一片麻岩杂岩的成因   总被引:2,自引:1,他引:1  
大别山榴辉岩由辉长岩、大陆拉斑玄武岩和少量泥灰质经高压变质作用形成。大别地块可划分出四个形成条件不同的榴辉岩区,它们代表一种构造-岩石组合体。片麻岩杂岩中各种高压变质岩类的发现证明它们与榴辉岩一起经历了原地高压变质过程。二者变质作用P-T参数的差异归因于抬升过程中退变质反应速度的不同。不同地区榴辉岩退变质组合及P-T条件与围岩的一致性表明,大别杂岩现今所展示的“递增”变质带是由榴辉岩相退变质作用形成的。高压榴辉岩-片麻岩杂岩的产生是印支期扬子与华北两个大陆板块碰撞的结果。  相似文献   
55.
勉略构造带作为秦岭造山带内重要的构造边界,关于其构造属性及晚古生代以来的地质背景,一直是学术界争论的焦点。碎屑锆石U-Pb年代学在限定地层单元的最大沉积年龄、研究区域构造岩浆事件及约束构造地质背景等方面行之有效。基于此,通过对勉略带内五郎坪北侧两河口变沉积地层和侵入其中的变形花岗岩脉体进行LA-ICP-MS锆石U-Pb年代学研究。获得2件变形花岗岩脉的结晶年龄均为406±1Ma。碎屑锆石主年龄谱分别为422~456Ma和558~826Ma,峰值年龄为441Ma和771Ma、813Ma,次级年龄谱分别为942~1495Ma和1658~2981Ma,峰值年龄不明显。依据最小一组碎屑锆石的峰值年龄(441Ma),和侵入其中的变形花岗岩脉(406±0.6Ma),限定该变沉积地层形成时代为406~441Ma(S_1-D_1)。碎屑锆石年龄谱显示该套变沉积地层物质来源较为复杂,其中秦岭造山带及扬子板块北缘早古生代、新元古代岩浆岩为其提供了74%±的物源,古老变质基底为其提供了26%±的物源。通过与区域上已有资料对比,认为勉略构造带内晚古生代沉积地层形成环境与邻区大致相同,且本次所获得的变沉积岩碎屑锆石年龄谱也与邻区泥盆系相似。综合认为,勉略构造带与邻区在晚古生代应属同一构造环境,晚古生代"勉略海盆"应当包括整个南秦岭。  相似文献   
56.
Fault slip analysis of Quaternary faults in southeastern Korea   总被引:1,自引:0,他引:1  
The Quaternary stress field has been reconstructed for southeast Korea using sets of fault data. The subhorizontal direction of the maximum principal stress (σ1) trended ENE and the direction of the minimum principal stress (σ3) was nearly vertical. The stress ratio (Φ = (σ2 − σ3) / (σ1 − σ3)) value was 0.65. Two possible interpretations for the stress field can be made in the framework of eastern Asian tectonics; (1) The σHmax trajectory for southeast Korea fits well with the fan-shaped radial pattern of maximum principal stress induced by the India–Eurasia collision. Thus, we suggest that the main source for this recent stress field in southeast Korea is related to the remote India–Eurasia continental collision. (2) The stress field in Korea shows a pattern similar to that in southwestern Japan. The origin for the E–W trending σHmax in Japan is known to be related to the mantle upwelling in the East China Sea. Thus, it is possible that Quaternary stress field in Korea has evolved synchronously with that in Japan. We suggest further studies (GPS and in situ stress measurement) to test these hypotheses.  相似文献   
57.
The Dvuyakornaya Formation section in the eastern Crimea is described and subdivided into biostratigraphic units based on ammonites, foraminifers, and ostracodes. The lower part of the formation contains first discovered ammonites of the upper Kimmeridgian (Lingulaticears cf. procurvum (Ziegler), Pseudowaagenia gemmellariana Olóriz, Euvirgalithacoceras cf. tantalus (Herbich), Subplanites sp.) and Tithonian (?(Lingulaticeras efimovi (Rogov), Phylloceras consaguineum Gemmellaro, Oloriziceras cf. schneidi Tavera, and Paraulacosphinctes cf. transitorius (Oppel)). Based on the assemblage of characteristic ammonite species, the upper part of the formation is attributed to the Berriasian Jacobi Zone. Five biostratigraphic units (zones and beds with fauna) distinguished based on foraminifers are the Epistomina ventriosa-Melathrokerion eospirialis Beds and Anchispirocyclina lusitanica-Melathrokerion spirialis Zone in the upper Kimmeridgian-Tithonian, the Protopeneroplis ultragranulatus-Siphoninella antiqua, Frondicularia cuspidiata-Saracenaria inflanta zones, and Textularia crimica Beds in the Berriasian. The Cyrherelloidea tortuosa-Palaeocytheridea grossi Beds of the Upper Jurassic and Raymoorea peculiaris-Eucytherura ardescae-Protocythere revili Beds of the Berriasian are defined based on ostracodes. A new biostratigraphic scale is proposed for the upper Kimmeridgian-Berriasian of the eastern Crimea. The Dvyyakornaya Formation sediments are considered as deepwater facies accumulated on the continental slope.  相似文献   
58.
Backstripping analysis and forward modeling of 162 stratigraphic columns and wells of the Eastern Cordillera (EC), Llanos, and Magdalena Valley shows the Mesozoic Colombian Basin is marked by five lithosphere stretching pulses. Three stretching events are suggested during the Triassic–Jurassic, but additional biostratigraphical data are needed to identify them precisely. The spatial distribution of lithosphere stretching values suggests that small, narrow (<150 km), asymmetric graben basins were located on opposite sides of the paleo-Magdalena–La Salina fault system, which probably was active as a master transtensional or strike-slip fault system. Paleomagnetic data suggesting a significant (at least 10°) northward translation of terranes west of the Bucaramanga fault during the Early Jurassic, and the similarity between the early Mesozoic stratigraphy and tectonic setting of the Payandé terrane with the Late Permian transtensional rift of the Eastern Cordillera of Peru and Bolivia indicate that the areas were adjacent in early Mesozoic times. New geochronological, petrological, stratigraphic, and structural research is necessary to test this hypothesis, including additional paleomagnetic investigations to determine the paleolatitudinal position of the Central Cordillera and adjacent tectonic terranes during the Triassic–Jurassic. Two stretching events are suggested for the Cretaceous: Berriasian–Hauterivian (144–127 Ma) and Aptian–Albian (121–102 Ma). During the Early Cretaceous, marine facies accumulated on an extensional basin system. Shallow-marine sedimentation ended at the end of the Cretaceous due to the accretion of oceanic terranes of the Western Cordillera. In Berriasian–Hauterivian subsidence curves, isopach maps and paleomagnetic data imply a (>180 km) wide, asymmetrical, transtensional half-rift basin existed, divided by the Santander Floresta horst or high. The location of small mafic intrusions coincides with areas of thin crust (crustal stretching factors >1.4) and maximum stretching of the subcrustal lithosphere. During the Aptian–early Albian, the basin extended toward the south in the Upper Magdalena Valley. Differences between crustal and subcrustal stretching values suggest some lowermost crustal decoupling between the crust and subcrustal lithosphere or that increased thermal thinning affected the mantle lithosphere. Late Cretaceous subsidence was mainly driven by lithospheric cooling, water loading, and horizontal compressional stresses generated by collision of oceanic terranes in western Colombia. Triassic transtensional basins were narrow and increased in width during the Triassic and Jurassic. Cretaceous transtensional basins were wider than Triassic–Jurassic basins. During the Mesozoic, the strike-slip component gradually decreased at the expense of the increase of the extensional component, as suggested by paleomagnetic data and lithosphere stretching values. During the Berriasian–Hauterivian, the eastern side of the extensional basin may have developed by reactivation of an older Paleozoic rift system associated with the Guaicáramo fault system. The western side probably developed through reactivation of an earlier normal fault system developed during Triassic–Jurassic transtension. Alternatively, the eastern and western margins of the graben may have developed along older strike-slip faults, which were the boundaries of the accretion of terranes west of the Guaicáramo fault during the Late Triassic and Jurassic. The increasing width of the graben system likely was the result of progressive tensional reactivation of preexisting upper crustal weakness zones. Lateral changes in Mesozoic sediment thickness suggest the reverse or thrust faults that now define the eastern and western borders of the EC were originally normal faults with a strike-slip component that inverted during the Cenozoic Andean orogeny. Thus, the Guaicáramo, La Salina, Bitúima, Magdalena, and Boyacá originally were transtensional faults. Their oblique orientation relative to the Mesozoic magmatic arc of the Central Cordillera may be the result of oblique slip extension during the Cretaceous or inherited from the pre-Mesozoic structural grains. However, not all Mesozoic transtensional faults were inverted.  相似文献   
59.
More than 1400 km of two-dimensional seismic data were used to understand the geometries and structural evolution along the western margin of the Girardot Basin in the Upper Magdalena Valley. Horizons are calibrated against 50 wells and surface geological data (450 km of traverses). At the surface, low-angle dipping Miocene strata cover the central and eastern margins. The western margin is dominated by a series of en echelon synclines that expose Cretaceous–Oligocene strata. Most synclines are NNE–NE trending, whereas bounding thrusts are mainly NS oriented. Syncline margins are associated mostly with west-verging fold belts. These thrusts started deformation as early as the Eocene but were moderately to strongly reactivated during the Andean phase. The Girardot Basin fill records at least four stratigraphic sequences limited by unconformities. Several periods of structural deformation and uplifting and subsidence have affected the area. An early Tertiary deformation event is truncated by an Eocene unconformity along the western margin of the Girardot Basin. An Early Oligocene–Early Miocene folding and faulting event underlies the Miocene unconformity along the northern and eastern margin of the Girardot Basin. Finally, the Late Miocene–Pliocene Andean deformation folds and erodes the strata along the margins of the basin against the Central and Eastern Cordilleras.  相似文献   
60.
The Plattengneis shear zone is a 250–600 m thick, flat lying, Cretaceous, eclogite facies, mylonitic shear zone, with north-over-south transport direction, that is exposed over almost 1000 km2 in the Koralpe region along the eastern margin of the Alps. Although the shear zone is one of the largest in the Alps, its role in the Eoalpine metamorphic evolution and the subsequent exhumation of the region, remain enigmatic and its large-scale geometry is not well understood. The outcrop pattern suggests that the shear zone is made up of a single sheet that is folded into a series of open syn- and antiforms with wavelengths of about 10 km. Eclogite bodies occur above, within and below the shear zone and there is no metamorphic grade change across the shear zone. In the south, the fold axes strike east–west and plunge shallowly to the east. In the north, the fold axes are oriented in north–south direction and form a dome shaped structure of the shear zone. Total shortening during this late stage warping event was of the order of 5%. Indirect evidence constrains this folding event to have occurred between 80 and 50 Ma and the fold geometry implies that the final exhumation in the Koralpe occurred somewhat later than further north. Interestingly, the shear zone appears to strike out of the topography in the south and dip into the topography in the north, so that north of the shear zone only hanging-wall rocks are exposed and south of it only foot-wall rocks. Possibilities for the geometric relationship of the Plattengneis shear zone with the surrounding south dipping detachments are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号