首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   12篇
  国内免费   65篇
测绘学   1篇
地球物理   18篇
地质学   127篇
海洋学   3篇
自然地理   4篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   5篇
  2019年   8篇
  2018年   7篇
  2017年   11篇
  2016年   9篇
  2015年   10篇
  2014年   7篇
  2013年   7篇
  2012年   11篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   7篇
  2007年   6篇
  2006年   12篇
  2005年   6篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
排序方式: 共有153条查询结果,搜索用时 31 毫秒
21.
西天山的增生造山过程   总被引:63,自引:2,他引:61  
高俊  钱青  龙灵利  张喜  李继磊  苏文 《地质通报》2009,28(12):1804-1816
西天山位于中亚造山带的西南缘,经历了复杂的增生造山过程。它也是标志塔里木地块北部被动陆缘与西伯利亚地块南侧宽阔活动陆缘最后拼合的构造带。根据近年来的研究进展,将西天山划分为北天山弧增生体、伊犁地块北缘活动陆缘、伊犁地块、伊犁地块南缘活动陆缘、中天山复合弧地体、西天山(高压)增生楔和塔里木北部被动大陆边缘。同时综述了西天山蛇绿岩、高压变质岩、花岗岩类的年代学新资料,讨论了其增生造山的过程。西天山增生造山与早古生代帖尔斯克依古洋、早古生代晚期—晚古生代南天山洋和晚古生代北天山洋3个代表洋盆的演化相关,增生造山结束的时间可能是早石炭世末。二叠纪时期,西天山至整个中亚地区进入后碰撞演化阶段。现有资料证实西天山为晚古生代增生造山带,并非三叠纪碰撞造山带。  相似文献   
22.
This paper is a synthesis of structural and geochronological data from eastern Mediterranean ophiolitic metamorphic rocks and surrounding units to interpret the intra‐oceanic subduction and ophiolite emplacement mechanism.

Metamorphic rocks occur as discontinuous tectonic slices at the base of the ophiolites, generally between the peridotite tectonites and volcanic‐sedimentary units, and locally in fault zones in the overlying peridotites. They consist essentially of amphibolite, and in lesser quantities, micaschist, quartzite, epidotite and marble.

Geological and geochronological data indicate that recrystallization of the metamorphic rocks occurred in the oceanic environment. The contact between the metamorphic rocks and the hanging‐wall is parallel to the foliation of the metamorphic rocks, and is interpreted as the fossil plane of intra‐oceanic subduction. Structural relationships suggest that intra‐oceanic subduction was situated between two lithospheric blocks separated by an oceanic fracture zone. Therefore the Neotethyan ophiolites with metamorphic soles represent the remnants of the overriding oceanic lithosphere's training slices of the metamorphic rocks at the base.

In the Anatolian region, radiometric dating of metamorphic rocks from the Taurus and Izmir‐Ankara‐Erzincan zone ophiolites yield nearly identical ages. Besides, palaeontological and structural data indicate coeval opening and similar oceanic ridge orientation. Consequently it is highly probable that Taurus and Izmir‐Ankara‐Erzincan zone ophiolites represent fragments of the same oceanic lithosphere derived from a single spreading zone. Palaeontological data from underlying volcanic and sedimentary units point out that the opening of the Neotethyan ocean occurred during Late Permian‐Middle Triassic time in the Iranian‐Oman region, during Middle Triassic in Dinaro‐Hellenic area, and finally during Late Triassic in the Anatolian region.

Radiometric dating of the metamorphic rocks exhibit that the intra‐oceanic thrusting occurred during late Lower‐early Late Jurassic for Dinaro‐Hellenic ophiolites, late Lower‐early Late Cretaceous for Anatolian, Iranian and Oman ophiolites well before their obduction on the Gondwanian continent. Neotethyan ophiolites were obducted onto various sections of the Gondwanian continent from late Upper Jurassic to Palaeocene time, Dinaro‐Hellenic ophiolites during late Upper Jurassic‐early Lower Cretaceous onto the Adriatic promontory, Anatolian, Iranian and Oman ophiolites from late Lower Cretaceous to Palaeocene onto the Aegean, Anatolian and Arabic promontories.  相似文献   
23.
The Early Cretaceous Duolong gold‐rich porphyry copper deposit is a newly discovered deposit with proven 5.38 Mt Cu resources of 0.72% Cu and 41 t gold of 0.23 g t?1 in northern Tibet. Granodiorite porphyry and quartz diorite porphyrite are the main ore‐bearing porphyries. A wide range of hydrothermal alteration associated with these porphyries is divided into potassic, argillic and propylitic zones from the ore‐bearing porphyry center outward and upward. In the hydrothermal alteration zones, secondary albite (91.5–99.7% Ab) occurs along the rim of plagioclase phenocryst and fissures. Secondary K‐feldspar (75.1–96.9% Or) replaces plagioclase phenocryst and matrix or occurs in veinlets. Biotite occurs mainly as matrix and veinlet in addition to phenocryst in the potassic zone. The biotite are Mg‐rich and formed under a highly oxidized condition at temperatures ranging from 400°C to 430°C. All the biotites are absent in F, and have high Cl content (0.19–0.26%), with log (XCl/XOH) values of ?2.74 to ?2.88 and IV (Cl) values of ?3.48 to ?3.35, suggesting a significant role of chloride complexes (CuCl2 and AuCl2) in transporting and precipitating copper and gold. Chlorites are present in all alteration zones and correspond mainly to pycnochlorite. They have similar Fe/(Fe+Mg), Mn/(Mn+Mg) ratios, and a formation temperature range of 280–360°C. However, the formation temperature of chlorite in the quartz‐gypsum‐carbonate‐chlorite vein is between 190°C and 220°C, indicating that it may have resulted from a later stage of hydrothermal activity. Fe3+/Fe2+ ratios of chlorites have negative correlation with AlIV, suggesting oxygen fugacity of fluids increases with decreasing temperature. Apatite mineral inclusions in the biotite phenocrysts show high SO3 content (0.44–0.82%) and high Cl content (1–1.37%), indicating the host magma had a high oxidation state and was enriched in S and Cl. The highest Cl content of apatite in the propylitic zone may have resulted from pressure decrease, and the lowest Cl content of apatite in the argillic zone may have been caused by a low Cl content in the fluids. The low concentration of SO3 content in the hydrothermal apatite compared to the magmatic one may have resulted from the decrease of oxygen fugacity and S content in the hydrothermal fluid, which are caused by the abundant precipitation of magnetite.  相似文献   
24.
This paper presents several types of new information including U–Pb radiometric dating of ophiolitic rocks and an intrusive granite, micropalaeontological dating of siliceous and calcareous sedimentary rocks, together with sedimentological, petrographic and structural data. The new information is synthesised with existing results from the study area and adjacent regions (Central Pontides and Lesser Caucasus) to produce a new tectonic model for the Mesozoic–Cenozoic tectonic development of this key Tethyan suture zone.

The Tethyan suture zone in NE Turkey (Ankara–Erzincan–Kars suture zone) exemplifies stages in the subduction, suturing and post-collisional deformation of a Mesozoic ocean basin that existed between the Eurasian (Pontide) and Gondwanan (Tauride) continents. Ophiolitic rocks, both as intact and as dismembered sequences, together with an intrusive granite (tonalite), formed during the Early Jurassic in a supra-subduction zone (SSZ) setting within the ?zmir–Ankara–Erzincan ocean. Basalts also occur as blocks and dismembered thrust sheets within Cretaceous accretionary melange. During the Early Jurassic, these basalts erupted in both a SSZ-type setting and in an intra-plate (seamount-type) setting. The volcanic-sedimentary melange accreted in an open-ocean setting in response to Cretaceous northward subduction beneath a backstop made up of Early Jurassic forearc ophiolitic crust. The Early Jurassic SSZ basalts in the melange were later detached from the overriding Early Jurassic ophiolitic crust.

Sedimentary melange (debris-flow deposits) locally includes ophiolitic extrusive rocks of boninitic composition that were metamorphosed under high-pressure low-temperature conditions. Slices of mainly Cretaceous clastic sedimentary rocks within the suture zone are interpreted as a deformed forearc basin that bordered the Eurasian active margin. The basin received a copious supply of sediments derived from Late Cretaceous arc volcanism together with input of ophiolitic detritus from accreted oceanic crust.

Accretionary melange was emplaced southwards onto the leading edge of the Tauride continent (Munzur Massif) during latest Cretaceous time. Accretionary melange was also emplaced northwards over the collapsed southern edge of the Eurasian continental margin (continental backstop) during the latest Cretaceous. Sedimentation persisted into the Early Eocene in more northerly areas of the Eurasian margin.

Collision of the Tauride and Eurasian continents took place progressively during latest Late Palaeocene–Early Eocene. The Jurassic SSZ ophiolites and the Cretaceous accretionary melange finally docked with the Eurasian margin. Coarse clastic sediments were shed from the uplifted Eurasian margin and infilled a narrow peripheral basin. Gravity flows accumulated in thrust-top piggyback basins above accretionary melange and dismembered ophiolites and also in a post-collisional peripheral basin above Eurasian crust. Thickening of the accretionary wedge triggered large-scale out-of-sequence thrusting and re-thrusting of continental margin and ophiolitic units. Collision culminated in detachment and northward thrusting on a regional scale.

Collisional deformation of the suture zone ended prior to the Mid-Eocene (~45?Ma) when the Eurasian margin was transgressed by non-marine and/or shallow-marine sediments. The foreland became volcanically active and subsided strongly during Mid-Eocene, possibly related to post-collisional slab rollback and/or delamination. The present structure and morphology of the suture zone was strongly influenced by several phases of mostly S-directed suture zone tightening (Late Eocene; pre-Pliocene), possible slab break-off and right-lateral strike-slip along the North Anatolian Transform Fault.

In the wider regional context, a double subduction zone model is preferred, in which northward subduction was active during the Jurassic and Cretaceous, both within the Tethyan ocean and bordering the Eurasian continental margin.  相似文献   
25.
26.
27.
布青山蛇绿混杂岩位于阿尼玛卿带西段,它是由早古生代和早石炭世一早二叠世两期蛇绿岩组成的复合蛇绿混杂岩带。蛇绿岩中的变质橄榄岩以方辉橄榄为主,高镁,∑PEE是球粒陨石的0.2-0.65倍,HREE是球粒陨石的0.28-0.32倍,属亏损的大洋岩石圈地幔。早古生代蛇绿岩中辉长岩、辉绿岩和玄武岩等镁铁质岩主要具N-MORB性质,少量具T-MORB性质。早石炭世一早二叠世蛇绿岩中玄武岩也主要具N-MORB性质、少量具T-MORB性质。它们均形成于洋中脊环境。本区曾存在成熟的早古生代洋盆和古特提斯洋盆,有更复杂的构造演化史。  相似文献   
28.
王俊华 《地质与勘探》2018,54(4):781-790
本文依托项目《西藏多龙矿床技术经济与环境综合评价》,利用高分二号、资源三号及landsat8等多源遥感数据对西藏多龙矿区生态地质环境进行调查研究。通过遥感技术与实地调查结合,查明了矿区生态地质环境现状,取得了涵盖人类活动、矿山地质活动、河流湖泊现状、植被覆盖与荒漠化情况等内容的专题成果。研究结果表明,砂金矿开采及尾矿堆积物给当地生态环境造成不可逆破坏,同时探槽、钻孔及地表金属污染等也给生态环境带来一定程度的影响。通过对目前中国矿储量第一的多龙铜多金属矿床进行开发前全面、综合的生态地质环境调查研究,能够为藏北矿山开发对生态地质环境的影响评估提供科学依据,为西藏多龙矿区建设绿色矿山和绿色开发提供建议及决策依据。  相似文献   
29.
多龙矿集区位于班公湖_怒江成矿带西段、羌塘地块南缘的岩浆弧中。过去十多年来,西藏地勘局第五地质大队在多龙矿集区内已发现和评价了多不杂、波龙、地堡那木岗、拿若、荣那等5处大型、超大型铜金多金属矿床,目前已探明的铜资源量近1000万吨,金300余吨。区内以斑岩型铜金矿床为主,兼有斑岩_浅成低温热液型和斑岩_角砾岩型矿化组合。研究发现,矿区黄铁矿的δ34S值变化于-2.2‰~2.3‰之间,平均为0.2‰,峰值在-1‰~1‰之间,塔式效应明显,接近幔源硫,显示成矿物质来源于深部岩浆;成矿温度介于250~420℃之间,成矿深度1~5 km,成矿流体为残余岩浆流体,大气降水在成矿过程中的作用不明显。作者根据多年的勘查实践,总结出多龙矿集区斑岩型铜金矿最有效的找矿勘查方法技术组合是:地质+化探(水系沉积物)+物探(高精度磁测、激电中梯)+钻探。  相似文献   
30.
拿若铜(金)矿床是多龙矿集区内继多不杂斑岩铜(金)矿、波龙斑岩铜(金)矿之后又一取得重大找矿突破的大型斑岩型矿床。作者以矿区探矿工程分析数据为基础,研究各成矿元素空间分布规律。成矿元素在垂向上的分带特征不明显,在平面上分带特征较显著,表现为自矿区中心ZK0001,向南西方向具有Cu+Au-Cu(Au、Ag)→Cu(Ag、Au)-Cu(Ag)的分带特征。同时,矿区土壤地球化学测量显示,从0线开始至31线(北东→南西)具有Mo、Cu→Mo(Cu、Au)→Cu、Au(Ag、Mo、Pb)→Pb→Pb、Zn分带特征,显示物质来源和热源位于0线附近,成矿流体是以0线、7线一带向四周运移,并具有从北东向南西方向运移的特点。通过矿床地质特征、元素分带特征研究,建立了矿区地球化学勘查模型。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号