首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2965篇
  免费   406篇
  国内免费   811篇
测绘学   28篇
大气科学   94篇
地球物理   615篇
地质学   2559篇
海洋学   583篇
天文学   4篇
综合类   103篇
自然地理   196篇
  2024年   26篇
  2023年   63篇
  2022年   87篇
  2021年   106篇
  2020年   93篇
  2019年   120篇
  2018年   101篇
  2017年   111篇
  2016年   132篇
  2015年   140篇
  2014年   159篇
  2013年   184篇
  2012年   154篇
  2011年   210篇
  2010年   112篇
  2009年   189篇
  2008年   220篇
  2007年   204篇
  2006年   219篇
  2005年   173篇
  2004年   161篇
  2003年   139篇
  2002年   118篇
  2001年   143篇
  2000年   135篇
  1999年   101篇
  1998年   97篇
  1997年   80篇
  1996年   68篇
  1995年   56篇
  1994年   55篇
  1993年   52篇
  1992年   33篇
  1991年   11篇
  1990年   26篇
  1989年   14篇
  1988年   16篇
  1987年   12篇
  1986年   7篇
  1985年   11篇
  1984年   17篇
  1983年   7篇
  1982年   7篇
  1981年   7篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1972年   1篇
排序方式: 共有4182条查询结果,搜索用时 31 毫秒
21.
冲绳海槽有孔虫壳体的微量元素Sr,Nd同位素地球化学   总被引:6,自引:1,他引:6  
钙质生物壳的微量元素组合和Sr,Nd同位素组成是识别海底混合源沉积物中生物源物质相对贡献的重要参数.冲绳海槽有孔虫壳体强烈富集Sr,P,Mn和Ba,富集Li,U,Th,Sc,Co,Pb,Zn,Cr,Rb,Y,Sb和轻稀土元素,弱富集V,Ga,Zr,Nb,Cd和中稀土元素,相对贫Ge,Mo,In,Sn,Cs,Hf,Ta,W,Tl,Bi和重稀土元素,海水中微量元素的背景含量和生物活动对微量元素的选择性吸收是有孔虫壳体中微量元素发生富集和贫化的主要机制,冲绳海槽有孔虫壳体的稀土元素配分模式与海水和太平洋有孔虫的有明显差异,表现出中稀土元素相对富集,并具有微弱的负Ce异常.有孔虫壳体的Sr,Nd同位素比值也与大洋海水不同,分别为0.709769和0.512162,前者略高于大洋海水,后者略低于大洋海水,表明冲绳海槽海水明显受大陆河水影响.  相似文献   
22.
We describe the effect of heavy metals Zn, Cd, Pb and Cu on the induction of methallothioneins on the clam Scrobicularia plana along a salinity gradient simulated under laboratory conditions. The clams were exposed to constant heavy metal concentrations in a dynamic estuary simulator during a 15-day assay to investigate possible induction of metal-binding proteins in them. The concentration of heavy metals in water was analysed. Clams were analysed for methallothionein concentrations. The speciation of Zn, Cd, Pb and Cu along the salinity gradient was modelled. Zn showed the highest concentrations and its prevalent species was the free ion. Intersite differences have been observed in methallothionein concentration and related to the salinity gradient. It seems that synthesis of methallothioneins is the result of physiological forces acting in concert with the changes in the chemical speciation of metals, owing to the trace metals uptake is controlled by means of an interaction of physiology and physicochemistry.  相似文献   
23.
The incidence of a large scale Trichodesmium erythraeum bloom along the southwest coast of India (Arabian Sea) observed in May 2005 is reported. Around 4802 filaments of T. erythraeum ml−1 seawater was observed and a colony consisted of 3.6 × 105 cells. The bloom was predominant off Suratkal (12° 59′N and 74° 31′E) with a depth of about 47 m, covering an area of 7 km in length and 2 km width. The concentrations of Zinc, Cadmium, Lead, Copper, Nickel and Cobalt were determined in samples collected from the bloom and non-bloom sites using stripping voltammetry. The observed hydrographical and meteorological parameters were found to be favorable for the bloom. The concentrations of Zinc, Cadmium and Nickel were found to be higher at bloom stations, while the concentrations of Lead, Copper and Cobalt were found to be very low at bloom stations. Elevated concentrations of Cadmium and Cobalt were observed at Valappad mainly due to the decomposition of detrital material produced in the bloom. Statistically significant differences (P > 0.01) in metal concentrations between the bloom and non-bloom stations were not observed except for Copper. Metals such as Lead, Copper and Cobalt were removed from the seawater at all places where bloom was observed. Cadmium was found to be slowly released during the decaying process of the bloom.  相似文献   
24.
The behavior and budget of Mn, Cd and Cu in the Gironde estuary were investigated through data from both the water column (WC) and sediment depth profiles. In the estuarine freshwater reaches, Mn and Cd removal from and Cu addition to the dissolved phase occurs with a magnitude equivalent to 10%, 30% and 25% of their respective annual fluvial gross dissolved input, respectively. In the saline estuary, diffusive benthic outflow is the main source of dissolved Mn (74% of the total gross dissolved input within the estuary) to the WC. In contrast, Cd (96%) and Cu (89%) are mainly released into the dissolved phase of the WC from fluvial, estuarine and dredging-related particles through complexation (Cd) and organic carbon mineralization (Cu). Anthropogenic activities (sediment dredging) induce pore water inputs, particulate sulfide oxidation and sediment resuspension, significantly contributing to the metal budget of the WC. The related amounts of metals released could be equivalent to 20–50% (Cd) and up to 70% (Cu) of their respective net dissolved addition. Mass balances suggest that a large part of the metals previously released into the dissolved phase from processes within the estuary are removed by suspended particles due to (co-)precipitation of Fe/Mn (oxy)hydroxides and scavenging on autochthonous organic matter. On an annual basis, the Gironde estuary acts as a net sink of dissolved Mn, removing 60% of the dissolved fluvial inputs, and as a net source of dissolved Cd and Cu, contributing ∼ 85% and 20–45% to the dissolved Cd and Cu fluxes to the ocean.  相似文献   
25.
26.
台湾海峡中北部上升流区各种形态磷的化学特性   总被引:4,自引:0,他引:4       下载免费PDF全文
陈水土 《海洋与湖沼》1993,24(6):664-670
根据1988年7月调查资料讨论了台湾海峡中北部海域夏季上升流区各种形态磷的分布特征。结果表明,上升流中心区(即海坛岛东侧一带水域)具有低温、高盐、低溶解氧;DIp,TDP,PP,TP较高;DOP较低(0.27);及DIP/DOP比值(约为1)较高的特性。DOP是该海域磷的主要形态(占TP的49.2%),其含量分布及其形态转化与生物活动直接相关,是该海域生物生产力高的体现。  相似文献   
27.
The short-time-scale variability of the remineralization patterns in the domain of Eastern North Atlantic Central Waters (ENACW) off the NW Iberian Peninsula is studied based on biogeochemical data (oxygen, nutrient salts, total alkalinity, pH, dissolved organic matter and fluorescence of dissolved humic substances) collected weekly between May 2001 and April 2002. The temporal variability of inorganic variables points to an intensification of remineralization during the summer and autumn, with an increase of nutrients, total inorganic carbon and fluorescence and a decrease of oxygen. During the subsequent winter mixing, there is a biogeochemical reset of the system, with lower nutrients, total inorganic carbon and fluorescence and higher oxygen. In contrast to inorganic variables, the levels of dissolved organic matter in the ENACW seem to respond to short-term events probably associated with fast sinking particles, where solubilisation of organic matter prevails over remineralization. Applying a previously published stoichiometric model, we observed a vertical fractionation of organic-matter remineralization. Although there is a preferential remineralization of proteins and P compounds in the entire domain of ENACW, the percentage was higher in the upper ENACW (σ<27.10 kg/m3) than in the lower; the percentage of N and P compounds in the oxidised organic matter was >80% for the upper ENACW and 63% for the lower. Likewise, the redissolution of calcareous structures contributes about 6% and 13% to the carbon regenerated in the upper and lower layers of ENACW, respectively.  相似文献   
28.
通过对东北太平洋海域中国多金属结核开辟区沉积物间隙水中铜、锰、镍等微量元素的详细研究表明,锰主要受沉积环境的影响,其含量的变化范围在0.16~8.61μg/dm3之间;铜和镍则主要与表层海水的初级生产力有关,研究区内间隙水中铜和镍含量的变化范围分别为0.16~20.8和0.80~3.12μg/dm3,且这些元素在沉积物—水界面处均存在最大浓度梯度.利用“Fick扩散定律”计算表明,锰在研究区主要是从上覆海水向沉积物扩散,是沉积物中锰的主要来源之一;而铜和镍则是从沉积物向上覆海水扩散,是底层海水中铜和镍的主要来源。与表层海水中铜和镍向底层海水的输送通量计算结果相比,底层海水中铜和镍的含量主要受沉积物的控制.  相似文献   
29.
This study was undertaken to elucidate the impact of early diagenetic processes on the accumulation of trace metals in Sapelo Island saltmarsh sediments as a function of time, space and sediment properties. Samples were collected from three sites in summer (May 1997) and winter (January 1998) along a transect from an unvegetated Creek Bank through a vegetated Tidal Levee to the vegetated midmarsh with evident lateral heterogeneity caused by hydrologic regime, macrophytes and microbial and macrofaunal activities. A suite of trace metals (As, Ba, Cr, Co, Cu, Cd, Mo, Ni, Pb, Th, Ti, U, V, Zn and Zr) was analyzed to obtain their depth-distribution at the three sites. Spatially marked differences were observed, that were primarily related to hydraulic flushing of trace metals away from the sites in high-energy regimes, rapid downward mixing and reworking of sediment via bioturbation, and below-ground degradation and production of Spartina biomass. Although sulfate reduction and the formation of acid volatile sulfide and pyrite were dominant processes throughout the marsh, the trace metal scavenging role of sulfides was not apparent. However, possible sulfurization of organic matter, leading to enhanced trapping of trace metals with organic carbon, may have played an important role in sequestration of trace metals.No similarity was observed visually between the depth trends of trace metals and sediment properties (grain size, iron-oxyhydroxide content, acid volatile sulfides and pyrite content) that are known to play a major role in trace metal partitioning. Only organic carbon content closely followed the trace metal profiles at all the three sites. Minor variation in depth-integrated sediment trace metal content was observed seasonally at each of the three sites. Furthermore, the depth trend of profiles of individual trace metals also did not vary significantly over the seasons either.  相似文献   
30.
During three cruises in the Black Sea, organised in July 1995 and April–May 1997, biological and chemical parameters that can influence the carbon budget were measured in the water column on the NW shelf, particularly in the mixing zone with Danube River waters. We observed in early spring (end of April–May) conditions an important input of freshwater organisms that enhanced the microbial activity in the low salinity range. High bacterial activity regenerates nitrogen in the form of nitrates, but is also responsible for an important consumption of ammonium and phosphate, leading to a high N/P ratio and a strong deficit in phosphorus. The consequence is a limitation of phytoplankton development but also a production of carbohydrates that accumulate all along the salinity gradient. These mechanisms are responsible for a seasonal accumulation of dissolved organic carbon (DOC) that increases from 210 μM in winter to about 280 μM in summer. All this excess DOC disappears during winter, probably degraded by bacterial activity. The degradation of carbon-rich organic matter increases the phosphorus demand by bacteria bringing limitation to phytoplankton primary production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号