首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3055篇
  免费   811篇
  国内免费   3428篇
测绘学   1篇
地球物理   263篇
地质学   6873篇
海洋学   31篇
天文学   1篇
综合类   81篇
自然地理   44篇
  2024年   44篇
  2023年   132篇
  2022年   238篇
  2021年   297篇
  2020年   333篇
  2019年   436篇
  2018年   438篇
  2017年   428篇
  2016年   438篇
  2015年   436篇
  2014年   455篇
  2013年   535篇
  2012年   567篇
  2011年   335篇
  2010年   315篇
  2009年   255篇
  2008年   239篇
  2007年   250篇
  2006年   234篇
  2005年   168篇
  2004年   160篇
  2003年   101篇
  2002年   61篇
  2001年   55篇
  2000年   57篇
  1999年   44篇
  1998年   39篇
  1997年   50篇
  1996年   30篇
  1995年   22篇
  1994年   31篇
  1993年   19篇
  1992年   18篇
  1991年   8篇
  1990年   5篇
  1989年   6篇
  1988年   5篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有7294条查询结果,搜索用时 31 毫秒
91.
新疆阿尔泰造山带构造作用的锆石裂变径迹分析   总被引:1,自引:0,他引:1  
在新疆阿尔泰造山带所获得的19个锆石裂变径迹年龄变化于155-243Ma之间,明显地分为2组,分别对应于2个构造活动期,早期为155-189Ma,晚期为189-243Ma。这与磷灰石裂变径迹年龄反映的62-100Ma和100-160Ma两个构造期完全一致。早期和晚期构造活动期持续的时间分别为54-60Ma和34-38Ma,而这两个构造期之间的间隔时间,则从早到晚由83-89Ma变为89-93Ma。同时,锆石裂变径迹年龄与距特斯巴汗断裂和巴寨断裂的距离有关,反映这两条断裂带对区域构造演化的控制作用。  相似文献   
92.
Olav Eklund  Alexey Shebanov 《Lithos》2005,80(1-4):229-247
The Åva ring complex is one of four Paleoproterozoic postcollisional shoshonitic ring complexes in southwestern Finland. It is composed of ring dykes of K-feldspar megacryst-bearing granite, mingled in places with a shoshonitic monzonite, and lamprophyre dykes crosscutting all the rocks in a radial pattern. A survey was undertaken to trace the magma chamber beneath the ring complex to date it and measure some intensive parameters to clarify the crystallisation conditions at depth before the granite was emplaced in the upper crust. Mineral separates were extracted from the core zones of K-feldspar megacrysts in the granite, heavy mineral fractions (including zircons) from these separates were used for P-T assessment and age determinations, and the results were compared to data obtained from bulk rock samples. It appears that magma differentiation took place in a midcrustal magma chamber (at 4 to 7 kbar) possibly 30 Ma before the emplacement of the ring complex in the upper crust (deep assemblage 1790 Ma, shallow assemblage 1760 Ma). Relatively high activity of the alkalies and a low oxygen fugacity characterised the midcrustal chamber. The juvenile Svecofennian crust was invaded by shoshonitic magmas from an enriched lithospheric mantle over a long period of time. Some of these magmas were stored and differentiated in the middle crust before transportation to the upper crust. The results also show that coarse-grained granites may provide evidence for several magmatic evolutionary episodes, e.g., differentiation and crystallisation in different environments prior to final emplacement.  相似文献   
93.
Extensive high-grade polydeformed metamorphic provinces surroundingArchaean cratonic nuclei in the East Antarctic Shield recordtwo tectono-thermal episodes in late Mesoproterozoic and lateNeoproterozoic–Cambrian times. In Western Dronning MaudLand, the high-grade Mesoproterozoic Maud Belt is juxtaposedagainst the Archaean Grunehogna Province and has traditionallybeen interpreted as a Grenvillian mobile belt that was thermallyoverprinted during the Early Palaeozoic. Integration of newU–Pb sensitive high-resolution ion microprobe and conventionalsingle zircon and monazite age data, and Ar–Ar data onhornblende and biotite, with thermobarometric calculations onrocks from the H.U. Sverdrupfjella, northern Maud Belt, resultedin a more complex PTt evolution than previouslyassumed. A c. 540 Ma monazite, hosted by an upper ampibolite-faciesmineral assemblage defining a regionally dominant top-to-NWshear fabric, provides strong evidence for the penetrative deformationin the area being of Pan-African age and not of Grenvillianage as previously reported. Relics of an eclogite-facies garnet–omphaciteassemblage within strain-protected mafic boudins indicate thatthe peak metamorphic conditions recorded by most rocks in thearea (T = 687–758°C, P = 9·4–11·3kbar) were attained subsequent to decompression from P >12·9 kbar. By analogy with limited U–Pb singlezircon age data and on circumstantial textural grounds, thisearlier eclogite-facies metamorphism is ascribed to subductionand accretion around 565 Ma. Post-peak metamorphic K-metasomatismunder amphibolite-facies conditions is ascribed to the intrusionof post-orogenic granite at c. 480 Ma. The recognition of extensivePan-African tectonism in the Maud Belt casts doubts on previousRodinia reconstructions, in which this belt takes a pivotalposition between East Antarctica, the Kalahari Craton and Laurentia.Evidence of late Mesoproterozoic high-grade metamorphism duringthe formation of the Maud Belt exists in the form of c. 1035Ma zircon overgrowths that are probably related to relics ofgranulite-facies metamorphism recorded from other parts of theMaud Belt. The polymetamorphic rocks are largely derived froma c. 1140 Ma volcanic arc and 1072 ± 10 Ma granite. KEY WORDS: Maud Belt; Pan-African orogeny; geochronology; PTt path, East Antarctica  相似文献   
94.
95.
Characterising youthful strike-slip fault systems within transtensional regimes is often complicated by the presence of tectonic geomorphic features produced by normal faulting associated with oblique extension. The Petersen Mountain fault in the northern Walker Lane tectonic province exhibits evidence of both normal and strike-slip faulting. We present the results of geologic and geomorphic mapping, and palaeoseismic trenching that characterise the fault's style and sense of deformation. The fault consists of two major traces. The western trace displaces colluvial, landslide, and middle to late Pleistocene alluvial fans and is associated with aligned range front saddles, linear drainages, and oversteepened range front slopes. The eastern trace is associated with a low linear bedrock ridge, a narrow graben, right deflected stream channels, and scarps in late Pleistocene alluvial fan deposits. A trench on the eastern trace of the fault exposed a clear juxtaposition of disintegrated granodiorite bedrock against sand and boulder alluvial fan deposits across a steeply east-dipping fault. The stratigraphic evidence supports the occurrence of at least one late Pleistocene earthquake with a component of lateral displacement. As such, the Petersen Mountain fault accommodates part of the ~7 mm/yr of dextral shear distributed across the northern Walker Lane.  相似文献   
96.
The partitioning of rare earth elements (REE) between zircon, garnet and silicate melt was determined using synthetic compositions designed to represent partial melts formed in the lower crust during anatexis. The experiments, performed using internally heated gas pressure vessels at 7 kbar and 900–1000 °C, represent equilibrium partitioning of the middle to heavy REE between zircon and garnet during high‐grade metamorphism in the mid to lower crust. The DREE (zircon/garnet) values show a clear partitioning signature close to unity from Gd to Lu. Because the light REE have low concentrations in both minerals, values are calculated from strain modelling of the middle to heavy REE experimental data; these results show that zircon is favoured over garnet by up to two orders of magnitude. The resulting general concave‐up shape to the partitioning pattern across the REE reflects the preferential incorporation of middle REE into garnet, with DGd (zircon/garnet) ranging from 0.7 to 1.1, DHo (zircon/garnet) from 0.4 to 0.7 and DLu (zircon/garnet) from 0.6 to 1.3. There is no significant temperature dependence in the zircon–garnet REE partitioning at 7 kbar and 900–1000 °C, suggesting that these values can be applied to the interpretation of zircon–garnet equilibrium and timing relationships in the ultrahigh‐T metamorphism of low‐Ca pelitic and aluminous granulites.  相似文献   
97.
Migmatites are predominant in the North Qinling (NQ) orogen, but their formation ages are poorly constrained. This paper presents a combined study of cathodoluminescence imaging, U–Pb age, trace element and Hf isotopes of zircon in migmatites from the NQ unit. In the migmatites, most zircon grains occur as new, homogeneous crystals, while some are present as overgrowth rims around inherited cores. Morphological and trace element features suggest that the zircon crystals are metamorphic and formed during partial melting. The inherited cores have oscillatory zoning and yield U–Pb ages of c. 900 Ma, representing their protolith ages. The early Neoproterozoic protoliths probably formed in an active continental margin, being a response to the assembly of the supercontinent Rodinia. The migmatite zircon yields Hf model ages of 1911 ± 20 to 990 ± 22 Ma, indicating that the protoliths were derived from reworking of Palaeoproterozoic to Neoproterozoic crustal materials. The anatexis zircon yields formation ages ranging from 455 ± 5 to 420 ± 4 Ma, with a peak at c. 435 Ma. Combined with previous results, we suggest that the migmatization of the NQ terrane occurred at c. 455–400 Ma. The migmatization was c. 50 Ma later than the c. 490 Ma ultra‐high‐P (UHP) metamorphism, indicating that they occurred in two independent tectonic events. By contrast, the migmatization was coeval with the granulite facies metamorphism and the granitic magmatism in the NQ unit, which collectively argue for their formation due to the northward subduction of the Shangdan Ocean. UHP rocks were distributed mainly along the northern margin and occasionally in the inner part of the NQ unit, indicating that they were exhumed along the northern edge and detached from the basement by the subsequent migmatization process.  相似文献   
98.
Yudai is a newly discovered copper deposit associated with a porphyritic quartz diorite, in the Kalatag district of the eastern Tianshan, China. SHRIMP U-Pb dating of zircons from the diorite yielded an age of 432 ± 3 Ma. The diorite is peraluminous (ASI = 0.98–1.10), calc-alkaline to tholeiitic with high Al2O3 of 16.6–17.7 wt% and Mg# of 57.4–67.4. Trace element characteristics of the diorite show it is enriched in Ba, K and Sr, and depleted in Nb, Ta, Ti, with a positive Eu anomaly and high Sr/Y and La/Yb ratios. This diorite has positive εNd(t) values ranging from 6.2 to 8.4 with low initial 87Sr/86Sr ratios of 0.704336 to 0.704450. These geochemical and isotopic characteristics indicate that the adakite-like diorite, associated with the copper mineralization, was emplaced in an island arc setting and resulted from partial melting of subducted oceanic plate in a mantle wedge.  相似文献   
99.
We report U–Pb zircon ages of c. 700–550 Ma, 262–220 Ma, 47–38 Ma and 15–14 Ma from amphibolites on Naxos Island in the Aegean extensional province of Greece. The zircon has complex internal structures. Based on cathodoluminescence response, zoning and crosscutting relationships a minimum of four zircon growth stages are identified: inherited core, magmatic core, inner metamorphic (?) rim and an outer metamorphic rim. Trace element compositions of the amphibolites suggest igneous differentiation and crustal assimilation. Zircon solubility as a function of saturation temperatures, Zr content and melt composition indicates that the zircon did not originally crystallize in the mafic bodies but was inherited from felsic precursor rocks, and subsequently assimilated into the mafic intrusives during emplacement. Zircon inheritance is corroborated by the complex, xenocrystic nature of the zircon in one sample. Ages of c. 700–550 Ma and 262–220 Ma are assigned to inherited zircon. Available geochemical data suggest that the 15–14 Ma metamorphic rims grew in situ in the amphibolites, corresponding to a high‐grade metamorphic event at this time. However, the geochemical data cannot conclusively establish if the c. 40 Ma zircon rims also grew in situ, or whether they were inherited along with the xenocrystic cores. Two scenarios for emplacement of the mafic intrusives are discussed: (i) Intrusion during late‐Triassic to Jurassic ocean basin development of the Aegean realm, in which case the 40 Ma zircon rims would have grown in situ, and (ii) emplacement in the Miocene as a result mafic underplating during large‐scale extension. In this case, only the 15–14 Ma metamorphic outer rims would have formed in situ in the amphibolitic host rocks.  相似文献   
100.
Incipient charnockites have been widely used as evidence for the infiltration of CO2‐rich fluids driving dehydration of the lower crust. Rocks exposed at Kakkod quarry in the Trivandrum Block of southern India allow for a thorough investigation of the metamorphic evolution by preserving not only orthopyroxene‐bearing charnockite patches in a host garnet–biotite felsic gneiss, but also layers of garnet–sillimanite metapelite gneiss. Thermodynamic phase equilibria modelling of all three bulk compositions indicates consistent peak‐metamorphic conditions of 830–925 °C and 6–9 kbar with retrograde evolution involving suprasolidus decompression at high temperature. These models suggest that orthopyroxene was most likely stabilized close to the metamorphic peak as a result of small compositional heterogeneities in the host garnet–biotite gneiss. There is insufficient evidence to determine whether the heterogeneities were inherited from the protolith or introduced during syn‐metamorphic fluid flow. U–Pb geochronology of monazite and zircon from all three rock types constrains the peak of metamorphism and orthopyroxene growth to have occurred between the onset of high‐grade metamorphism at c. 590 Ma and the onset of melt crystallization at c. 540 Ma. The majority of metamorphic zircon growth occurred during protracted melt crystallization between c. 540 and 510 Ma. Melt crystallization was followed by the influx of aqueous, alkali‐rich fluids likely derived from melts crystallizing at depth. This late fluid flow led to retrogression of orthopyroxene, the observed outcrop pattern and to the textural and isotopic modification of monazite grains at c. 525–490 Ma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号