首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1067篇
  免费   80篇
  国内免费   64篇
测绘学   89篇
大气科学   29篇
地球物理   250篇
地质学   621篇
海洋学   55篇
天文学   8篇
综合类   38篇
自然地理   121篇
  2024年   1篇
  2023年   4篇
  2022年   11篇
  2021年   19篇
  2020年   19篇
  2019年   26篇
  2018年   10篇
  2017年   31篇
  2016年   20篇
  2015年   36篇
  2014年   54篇
  2013年   53篇
  2012年   21篇
  2011年   68篇
  2010年   41篇
  2009年   96篇
  2008年   127篇
  2007年   98篇
  2006年   78篇
  2005年   75篇
  2004年   48篇
  2003年   34篇
  2002年   37篇
  2001年   33篇
  2000年   33篇
  1999年   30篇
  1998年   26篇
  1997年   11篇
  1996年   19篇
  1995年   7篇
  1994年   15篇
  1993年   10篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1978年   1篇
排序方式: 共有1211条查询结果,搜索用时 495 毫秒
501.
In tropical areas, mass movements are common phenomena, especially during periods of heavy rainfall, which frequently take place in the summer season. These phenomena have caused loss of life and serious damage to infrastructure and properties. The most prominent of these phenomena are landslides that can produce debris flows. Thus, this article aims at determining affected areas using a model to predict landslide prone areas (SHALSTAB) combined with an empirical model designed to define the debris flow travel distance and area of deposition. The methodology of this work consists of the following steps: (a) elaboration of a digital elevation model (DEM), (b) application of the deterministic SHALSTAB model to locate the landslide prone areas, (c) identification of the debris flow travel distance and area of deposition, and (d) mapping of the affected areas (landslides and debris flows). This work was developed in an area in which many mass movements occurred after intense rainfall during the summer season (February 1996) in the state of Rio de Janeiro, southeast Brazil. All of the scars produced by that event were mapped, allowing for validation of the applied models. The model results show that the mapped landslide locations can adequately be simulated by the model.  相似文献   
502.
A catastrophic earthquake with a Richter magnitude of 7.3 occurred in the Chi-Chi area of Nantou County on 21 September 1999. Large-scale landslides were generated in the Chiufenershan area of Nantou County in central Taiwan. This study used a neural network-based classifier and the proposed NDVI-based quantitative index coupled with multitemporal SPOT images and digital elevation models (DEMs) for the assessment of long-term landscape changes and vegetation recovery conditions at the sites of these landslides. The analyzed results indicate that high accuracy of landslide mapping can be extracted using a neural network-based classifier, and the areas affected by these landslides have gradually been restored from 211.52 ha on 27 September 1999 to 113.71 ha on 11 March 2006, a reduction of 46.24%, after six and a half years of assessment. In accordance with topographic analysis at the sites of the landslides, the collapsed and deposited areas of the landslide were 100.54 and 110.98 ha, with corresponding debris volumes of 31,983,800 and 39,339,500 m3. Under natural vegetation succession, average vegetation recovery rate at the sites of the landslides reached 36.68% on 11 March 2006. The vegetation recovery conditions at the collapsed area (29.17%) are shown to be worse than at the deposited area (57.13%) due to topsoil removal and the steep slope, which can be verified based on the field survey. From 1999 to 2006, even though the landslide areas frequently suffered from the interference of typhoon strikes, the vegetation succession process at the sites of the landslides was still ongoing, which indicates that nature, itself, has the capability for strong vegetation recovery for the denudation sites. The analyzed results provide very useful information for decision-making and policy-planning in the landslide area.  相似文献   
503.
This paper addresses the temporal variation of rainfall-triggered landslide hazard within the broader context of natural risk evolution. Analysis of a sequence of aerial photos covering a period of 60 years allowed the establishment of a record of landsliding for a site in the Wellington region, New Zealand. The data show one very dominant peak in the magnitude of landslide occurrence in the late 1970s, followed by a continuous decrease. Landslide hazard can be expressed by the frequency and magnitude of the landslide events, with the total surface area affected used as a surrogate for magnitude. However, the distinct decline of landslide magnitude through time from the 1980s onwards indicates that landslide hazard may change with time. This possibility is further explored by correlating potential landslide triggering storms with the magnitude of the landslide event, using the ‘Antecedent Soil Water Status’ model in combination with daily rainfall. The relation between magnitudes of rainfall and magnitudes of landslide events is found to be weak, suggesting that a given ‘Critical Water Content’ (antecedent soil water status and rainfall on the day) does not produce similar magnitudes of landsliding. Furthermore, the study shows that reactivation of previous landslides before the peak landslide occurrence of the late 1970s is low, while the situation is reversed after this peak and reactivation in the subsequent years plays a larger role. It is concluded that the pattern of landsliding cannot be explained by the pattern of rainfall and other factors are controlling the variation of landslide hazard in time. A possible explanation is a change of the geomorphological system with time, instigated by a massive period of landsliding (the late 1970s peak). Subsequent sediment exhaustion of source areas resulting from this period appears to alter the system’s subsequent reaction to an external trigger such as rainfall. The study demonstrates that landslide hazard analysis in general should not rely on the integral of the frequency–magnitude relationship only, but should include potential non-linear changes of system settings to increase the understanding of future system behaviour, and therefore hazard and risk.
Gabi HufschmidtEmail:
  相似文献   
504.
The purpose of this study is to achieve an understanding of the failure mechanisms which caused the Eaux-Bonnes landslide. The geological investigations carried out on the slope of the landslide showed that the sliding mass was cut by numerous faults. The factors controlling the landslide failure were complex, and it is known that neither earthquakes nor heavy precipitation could have triggered the disruption. The groundwater within the solid rock mass has been surveyed, because significant precipitation events during the 2 years preceding the beginning of the paroxysmal phase of the landslide could have led to an increase in pore water pressure along these fractures, thereby triggering the landslide. In order to achieve a full understanding of the failure mechanism, and to identify the origin of the groundwater, a hydrogeochemical survey was carried out over a period of 1 year. The results reveal the existence of high sulphate concentrations in the groundwater originating in springs located at the bottom of the landslide. The sulphate concentrations are correlated with high calcium concentrations, and clearly indicate the presence of gypsum in the vicinity of the lower reaches of the landslide. The presence of gypsum in this area of the Pyrenees suggests that deep groundwater played a role in triggering the landslide.  相似文献   
505.
Landslide hazard and risk assessment on the northern slope of Mt. Changbai, a well-known tourist attraction near the North Korean-Chinese border, are assessed. This study is divided into two parts, namely, landslide hazard zonation and risk assessment. The 1992 Anbalagan and Singh method of landslide hazard zonation (LHZ) was modified and used in this area. In this way, an Associative Analysis Method was used in representative areas to get a measure for controlling factors (slope gradient, relative relief, vegetation, geology, discontinuity development, weak layer thickness and ground water). For the membership degree of factor to slope failure, the middle range of limited values was used to calculate LHZ. Based on an estimation of the potential damage from slope failure, a reasonable risk assessment map was obtained using the relationship of potential damage and probable hazard to aid future planning and prediction and to avert loss of life.  相似文献   
506.
The influence of rainstorm pattern on shallow landslide   总被引:4,自引:0,他引:4  
In this study, the influence of the rainstorm pattern on shallow landslide is examined. The physically-based shallow landslide model is used to conduct this examination with considering four representative rainstorm patterns including uniform, advanced, central, and delayed rainstorms. The results show that in spite of the rainfall duration and the rainfall pattern, the rainstorm with less than the minimum landslide-triggering rainfall amount will not trigger landslide. However, for the rainstorm with greater than the minimum landslide-triggering rainfall amount, the occurrence of landslide significantly depends not only on the rainfall duration but also on the rainfall pattern. Among the four representative rainstorm patterns, the delayed rainstorm has the greatest rainfall duration threshold for landslide occurrence, followed by the central rainstorm, and then the uniform rainstorm. In addition, for each rainstorm pattern, the corresponding rainfall duration threshold for landslide occurrence decreases with the increase of rainfall amount, and seems to be constant for large rainfall amount.  相似文献   
507.
The current study deals with a catastrophic landslide that occurred due to heavy rainfall in Adana, Southern Turkey in 2001. The research area, which is one of the largest populated districts in Adana, and one of the most tropical places between the Middle East and southern Europe, has about 25,000 people. On the basis of geological and geotechnical surveys, the landslide phenomena and the effects of landslide are examined. To understand the slide mechanism of the landslide, ground reconnaissance, laboratory and in situ tests are conducted. It is observed that the clayey and silty layers of the site are heavily saturated due to extreme rainfall in winter, and consequently sheared. The landslide consists of a block sliding in the upper portions and a debris flow/soil flow component around the margins of the sliding blocks in the middle parts and at the toe. Although there was no loss of human life, it has caused significant economic losses. Besides, it is determined that if precautions are not taken around the landslide area, larger landslides could definitely occur in the future.  相似文献   
508.
Landslide risk assessment (LRA) is a key component of landslide studies. The landslide risk can be defined as the potential for adverse consequences or loss to human population and property due to the occurrence of landslides. The LRA can be regional or site-specific in nature and is an important information for planning various developmental activities in the area. LRA is considered as a function of landslide potential (LP) and resource damage potential (RDP). The LP and RDP are typically characterized by the landslide susceptibility zonation map and the resource map (i.e., land use land cover map) of the area, respectively. Development of approaches for LRA has always been a challenge. In the present study, two approaches for LRA, one based on the concept of danger pixels and the other based on fuzzy set theory, have been developed and implemented to generate LRA maps of Darjeeling Himalayas, India. The LRA map based on the first approach indicates that 1,015 pixels of habitation and 921 pixels of road section are under risk due to landslides. The LRA map derived from fuzzy set theory based approach shows that a part of habitat area (2,496 pixels) is under very high risk due to landslides. Also, another part of habitat area and a portion of road network (7,204 pixels) are under high risk due to landslides. Thus, LRA map based on the concept of danger pixels gives the pixels under different resource categories at risk due to landslides whereas the LRA map based on the concept of fuzzy set theory further refines this result by defining the degree of severity of risk to these categories by putting these into high and low risk zones. Hence, the landslide risk assessment study carried out using two approaches in this paper can be considered in cohesion for assessing the risks due to landslides in a region.  相似文献   
509.
An extreme rainfall event over the southern Shetland Islands in northern Scotland, UK, on 19 September 2003, triggered at least 20 significant peat slides and at least 15 smaller landslides of varying types. The peat slides were examined and surveyed to characterise and explain the distinctive morphological features that were produced. The failures varied in size from 0.4 to 7.3 ha (2,300 to 59,000 m3 displaced volumes of peat) and involved blanket peat up to 3 m deep and slope gradients as low as 4°. Almost all of the failure surfaces were located at the peat–mineral interface. The morphological features included large areas (up to 0.5 ha) of intact peat that moved without breaking up, linear compression and thrust features and unusual occurrences of mineral debris. These features suggest peat of high tensile strength throughout its depth and the generation of high and sometimes artesian water pressures at the base of the peat during the event. However, the variations between peat slides highlight some of the difficulties of trying to assess the susceptibility of blanket peat to failure without full knowledge of the local peat geotechnical properties and structural features within the peat mass.  相似文献   
510.
The influence of static shear stress on undrained cyclic behavior of nonplastic and low-plasticity silts has been studied by means of undrained cyclic torque-controlled ring-shear tests. The cyclic and post-cyclic behavior of silty soils assumed on sliding surface were investigated to assess the liquefaction potential and cyclically induced deformation of silty slopes. Six different initial static shear stresses corresponding to slope angles from 0° to 25° were examined. To better understand undrained cyclic behavior of silt governed by a change in clay content, three different mixtures were achieved by mixing of nonplastic silt with 0%, 10%, and 20% of commercially available clay. These tests were conducted to simulate field conditions prior to earthquake with initial static shear stresses corresponding to slopes and those with no initial static shear stresses of level grounds. The gradual loss of mobilized undrained cyclic shear resistance after failure and pore water buildup in relation to a number of cycles was observed. The undrained response of the soil to cyclic shear stress loading with the constant amplitude revealed the significant effect of the initial static shear stress on the excess pore water pressure generation and post-failure shear resistance. Test results showed that an increase in the initial static shear stress at the given initial effective normal stress is associated with an increase of mobilized shear resistance at its peak state; however, the actual resistance to liquefaction diminished for both nonplastic and low-plasticity silts. During both cyclic and post-cyclic stages of loading, distinctly different types of shear deformation were identified. In order to evaluate mobility of landslides, a modified conventional brittleness index for seismic loading, , was proposed and used to characterize unlimited deformation of silts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号