首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7749篇
  免费   1615篇
  国内免费   3469篇
测绘学   120篇
大气科学   58篇
地球物理   1377篇
地质学   9916篇
海洋学   375篇
天文学   32篇
综合类   504篇
自然地理   451篇
  2024年   30篇
  2023年   127篇
  2022年   233篇
  2021年   301篇
  2020年   303篇
  2019年   428篇
  2018年   319篇
  2017年   307篇
  2016年   436篇
  2015年   381篇
  2014年   523篇
  2013年   525篇
  2012年   572篇
  2011年   613篇
  2010年   484篇
  2009年   603篇
  2008年   584篇
  2007年   630篇
  2006年   617篇
  2005年   513篇
  2004年   470篇
  2003年   458篇
  2002年   382篇
  2001年   341篇
  2000年   350篇
  1999年   352篇
  1998年   348篇
  1997年   284篇
  1996年   265篇
  1995年   199篇
  1994年   168篇
  1993年   158篇
  1992年   119篇
  1991年   98篇
  1990年   69篇
  1989年   67篇
  1988年   52篇
  1987年   44篇
  1986年   25篇
  1985年   20篇
  1984年   13篇
  1983年   4篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
701.
阴山地区印支期碱性侵入岩岩石地球化学特征   总被引:17,自引:2,他引:17  
通过系统的矿物学、岩石学、地球化学研究,确立了阴山地区印支期碱性岩在空间上分为南北两条近东西走向的岩带。南带以霓辉正长岩为主,北带以碱性正长岩为主。南北两带岩体均富集轻稀土元素、大离子亲石元素和高场强元素,而Cr、Ni等相容元素含量很低。结合Nd、Sr、Pb同位素特征,认为该地区印支期碱性岩源自富集地幔,并受到不同程度的地壳物质混染。  相似文献   
702.
提供了地震勘探方法在金属矿区寻找隐伏火成岩(矿)体的应用技术和地质成果。通过钻探工程验证,其结果与地震解释推断的结论有较好的吻合。这种尝试对拓宽地震勘探服务领域有重大意义。  相似文献   
703.
应用多项分析测试技术,对南祁连盆地热水-默勒地区上三叠统可能烃源岩进行了有机质丰度,类型、成熟度、有机母源和沉积环境等方面的分析。该区上三叠统可能烃源岩为前三角洲和湖沼相的泥质岩沉积,其有机质丰度较高,有机质类型为腐殖型和混合型,主要处于成熟阶段,有机母质主要为高等植物和一定数量的藻菌类低等水生生物的贡献。综合分析认为该套地层具有一定的生烃能力,其中一些层段生烃潜力较大。  相似文献   
704.
长庆油区为解决低渗油田稳产问题,选择了一批井进行了高强度支撑剂压裂试验。本文对16口压裂井投产后的稳产效果进行了研究,得出该工艺适合的油层特点。  相似文献   
705.
笔者通过对澜沧某电站右岸坝肩复杂岩体的成因进行分析,采用岩体质量指数Z并结合水利水电工程围岩分级和RMR分级等岩体分类方法对电站右岸坝肩的复杂岩体进行了综合分类。  相似文献   
706.
简要介绍了第13届国际变形机理、流变学和构造学学术会议的概况和特点,综述了地震变形作用的研究现状。  相似文献   
707.
Llullaillaco is one of a chain of Quaternary stratovolcanoes that defines the present Andean Central Volcanic Zone (CVZ), and marks the border between Chile and Argentina/Bolivia. The current edifice is constructed from a series of thick dacitic lava flows, forming the second tallest active volcano in the world (6739 m). K–Ar and new biotite laser 40Ar/39Ar step-heating dates indicate that the volcano was constructed during the Pleistocene (≤1.5 Ma), with a youngest date of 0.048±0.012 Ma being recorded for a fresh dacite flow that descends the southern flank. Additional 40Ar/39Ar measurements for andesitic and dacitic lava flows from the surrounding volcanic terrain yield dates of between 11.94±0.13 Ma and 5.48±0.07 Ma, corresponding to an extended period of Miocene volcanism which defines much of the landscape in this region. Major- and trace-element compositions of lavas from Llullaillaco are typical of Miocene–Pleistocene volcanic rocks from the western margin of the CVZ, and are related to relatively shallow-dipping subduction of the Nazca plate beneath northern Chile and Argentina.Oversteepening of the edifice by stacking of thick, viscous, dacitic lava flows resulted in collapse of its southeastern flank to form a large volcanic debris avalanche. Biotite 40Ar/39Ar dating of lava blocks from the avalanche deposit indicate that collapse occurred at or after 0.15 Ma, and may have been triggered by extrusion of a dacitic flow similar to the one dated at 0.048±0.012 Ma. The avalanche deposits are exceptionally well preserved due to the arid climate, and prominent levées, longitudinal ridges, and megablocks up to 20-m diameter are observed.The avalanche descended 2.8 km vertically, and bifurcated around an older volcano, Cerro Rosado, before debouching onto the salt flats of Salina de Llullaillaco. The north and south limbs of the avalanche traveled 25 and 23 km, respectively, and together cover an area of approximately 165 km2. Estimates of deposit volume are hampered by a lack of thickness information except at the edges, but it is likely to be between 1 and 2 km3. Equivalent coefficients of friction of 0.11 and 0.12, and excess travel distances of 20.5 and 18.5 km, are calculated for the north and south limbs, respectively. The avalanche ascended 400 m where it broke against the western flank of Cerro Rosado, and a minimum flow velocity of 90 m s−1 can be calculated at this point; lower velocities of 45 m s−1 are calculated where distal toes ascend 200 m slopes.It is suggested that the remaining precipitous edifice has a high probability for further avalanche collapse in the event of renewed volcanism.  相似文献   
708.
Magmatic gas scrubbing: implications for volcano monitoring   总被引:1,自引:0,他引:1  
Despite the abundance of SO2(g) in magmatic gases, precursory increases in magmatic SO2(g) are not always observed prior to volcanic eruption, probably because many terrestrial volcanoes contain abundant groundwater or surface water that scrubs magmatic gases until a dry pathway to the atmosphere is established. To better understand scrubbing and its implications for volcano monitoring, we model thermochemically the reaction of magmatic gases with water. First, we inject a 915°C magmatic gas from Merapi volcano into 25°C air-saturated water (ASW) over a wide range of gas/water mass ratios from 0.0002 to 100 and at a total pressure of 0.1 MPa. Then we model closed-system cooling of the magmatic gas, magmatic gas-ASW mixing at 5.0 MPa, runs with varied temperature and composition of the ASW, a case with a wide range of magmatic–gas compositions, and a reaction of a magmatic gas–ASW mixture with rock. The modeling predicts gas and water compositions, and, in one case, alteration assemblages for a wide range of scrubbing conditions; these results can be compared directly with samples from degassing volcanoes. The modeling suggests that CO2(g) is the main species to monitor when scrubbing exists; another candidate is H2S(g), but it can be affected by reactions with aqueous ferrous iron. In contrast, scrubbing by water will prevent significant SO2(g) and most HCl(g) emissions until dry pathways are established, except for moderate HCl(g) degassing from pH<0.5 hydrothermal waters. Furthermore, it appears that scrubbing will prevent much, if any, SO2(g) degassing from long-resident boiling hydrothermal systems. Several processes can also decrease or increase H2(g) emissions during scrubbing making H2(g) a poor choice to detect changes in magma degassing.We applied the model results to interpret field observations and emission rate data from four eruptions: (1) Crater Peak on Mount Spurr (1992) where, except for a short post-eruptive period, scrubbing appears to have drastically diminished pre-, inter-, and post-eruptive SO2(g) emissions, but had much less impact on CO2(g) emissions. (2) Mount St. Helens where scrubbing of SO2(g) was important prior to and three weeks after the 18 May 1980 eruption. Scrubbing was also active during a period of unrest in the summer of 1998. (3) Mount Pinatubo where early drying out prevented SO2(g) scrubbing before the climactic 15 June 1991 eruption. (4) The ongoing eruption at Popocatépetl in an arid region of Mexico where there is little evidence of scrubbing.In most eruptive cycles, the impact of scrubbing will be greater during pre- and post-eruptive periods than during the main eruptive and intense passive degassing stages. Therefore, we recommend monitoring the following gases: CO2(g) and H2S(g) in precursory stages; CO2(g), H2S(g), SO2(g), HCl(g), and HF(g) in eruptive and intense passive degassing stages; and CO2(g) and H2S(g) again in the declining stages. CO2(g) is clearly the main candidate for early emission rate monitoring, although significant early increases in the intensity and geographic distribution of H2S(g) emissions should be taken as an important sign of volcanic unrest and a potential precursor. Owing to the difficulty of extracting SO2(g) from hydrothermal waters, the emergence of >100 t/d (tons per day) of SO2(g) in addition to CO2(g) and H2S(g) should be taken as a criterion of magma intrusion. Finally, the modeling suggests that the interpretation of gas-ratio data requires a case-by-case evaluation since ratio changes can often be produced by several mechanisms; nevertheless, several gas ratios may provide useful indices for monitoring the drying out of gas pathways.  相似文献   
709.
Surface sediment samples were collected from the Squamish River Delta, British Columbia, in order to determine the role of sediment surface area in the preservation of organic matter (OM) in a paralic sedimentary environment. The Squamish Delta is an actively prograding delta, located at the head of Howe Sound.Bulk total organic carbon (TOC) values across the Squamish Delta are low, ranging from 0.1 to 1.0 wt.%. The carbon/total nitrogen ratio (Corg/N) ranges from 6 to 17, which is attributed to changes in OM type and facies variations. The <25-μm fraction has TOC concentrations up to 2.0 wt.%, and a Corg/N ratio that ranges from 14 to 16. The 53–106-μm fraction has higher TOC concentrations and Corg/N ratios relative to the 25–53-μm fraction. The Corg/N ratio ranges from 9 to 18 in the 53–106-μm fraction and 5.5–10.5 in the 25–53-μm fraction. Surface area values for bulk sediments are low (0.5–3.0 m2/g) due to the large proportion of silt size material. Good correlation between surface area and TOC in bulk samples suggests that OM is adsorbed to mineral surfaces. Similar relationships between surface area and TOC were observed in size-fractionated samples. Mineralogy and elemental composition did not correlate with TOC concentration.The relationships between surface area, TOC and total nitrogen (TN) can be linked to the hydrodynamic and sedimentological conditions of the Squamish Delta. As a result, the Squamish Delta is a useful modern analogue for the formation of petroleum source rocks in ancient deltaic environments, where TOC concentrations are often significantly lower than those in source rocks formed in other geological settings.  相似文献   
710.
The heat capacity of natural chamosite (XFe=0.889) and clinochlore (XFe=0.116) were measured by differential scanning calorimetry (DSC). The samples were characterised by X-ray diffraction, microprobe analysis and Mössbauer spectroscopy. DSC measurements between 143 and 623?K were made following the procedure of Bosenick et?al. (1996). The fitted data for natural chamosite (CA) in J?mol?1?K?1 give: C p,CA = 1224.3–10.685?×?103?×?T ??0.5???6.4389?× 106T ??2?+?8.0279?×?108?×?T ??3 and for the natural clinochlore (CE): C p,CE = 1200.5–10.908?×?103T ??0.5?? 5.6941?×?106?×?T ??2?+?7.1166?×?108?×?T ??3. The corrected C p-polynomial for pure end-member chamosite (Fe5Al)[Si3AlO10](OH)8 is C p,CAcor = 1248.3–11.116?× 103?×?T ??0.5???5.1623?×?106?×?T ??2?+?7.1867?×?108×T ??3 and the corrected C p-polynomial for pure end-member clinochlore (Mg5Al)[Si3AlO10](OH)8 is C p,CEcor = 1191.3–10.665?×?103?×?T ??0.5???6.5136?×?106?×?T ??2?+ 7.7206?×?108?×?T ??3. The corrected C p-polynomial for clinochlore is in excellent agreement with that in the internally consistent data sets of Berman (1988) and Holland and Powell (1998). The derived C p-polynomial for chamosite (C p,CAcor) leads to a 4.4% higher heat capacity, at 300?K, compared to that estimated by Holland and Powell (1998) based on a summation method. The corrected C p-polynomial (C p,CAcor) is, however, in excellent agreement with the computed C p-polynomial given by Saccocia and Seyfried (1993), thus supporting the reliability of Berman and Brown's (1985) estimation method of heat capacities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号