首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   305篇
  免费   35篇
  国内免费   169篇
地球物理   19篇
地质学   483篇
海洋学   3篇
综合类   1篇
自然地理   3篇
  2024年   6篇
  2023年   14篇
  2022年   26篇
  2021年   12篇
  2020年   30篇
  2019年   32篇
  2018年   16篇
  2017年   39篇
  2016年   21篇
  2015年   16篇
  2014年   18篇
  2013年   86篇
  2012年   26篇
  2011年   18篇
  2010年   8篇
  2009年   16篇
  2008年   18篇
  2007年   23篇
  2006年   15篇
  2005年   8篇
  2004年   13篇
  2003年   8篇
  2002年   7篇
  2001年   6篇
  2000年   2篇
  1999年   5篇
  1998年   8篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1984年   1篇
  1983年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有509条查询结果,搜索用时 15 毫秒
71.
The magnetotelluric (MT) method was used to image the crust and upper mantle beneath the Delamerian and Lachlan orogens in western Victoria, Australia. During the Cambrian time period, this region changed from being the extended passive margin of Proterozoic Australia into an Andean-style convergent margin that progressively began to accrete younger oceanic terranes. Several broadband MT transects, which were collected in stages along coincident deep (full crust imaging) seismic reflection lines, have now been combined to create a continuous 500 km east–west transect over the Delamerian–Lachlan transition region in the Stawell Zone. We present the electrical resistivity structure of the lithosphere using both 3D and 2D inversion methods. Additionally, 1D inversions of long-period AusLAMP (Australian Lithospheric Architecture Magnetotelluric Project) MT data on a 55 km regionally spaced grid were used to provide starting constraints for the 3D inversion of the 2D profile. The Delamerian to Lachlan Orogen transition region coincides with the Mortlake Discontinuity, which marks an isotopic discontinuity in Cenozoic basalts, with higher strontium isotope enrichment ratios in the Lachlan Orogen relative to the Delamerian Orogen. Phase tensor ellipses of the MT data reveal a distinct change in electrical resistivity structure near the location of the Mortlake Discontinuity, and results of 3D and 2D inversions along the MT profile image a more conductive lower crust and upper mantle beneath the Lachlan Orogen than the Delamerian Orogen. Increased conductivity is commonly ascribed to mantle enrichment and thus supports the notion that the isotope enrichment of the Cenozoic basalts at least partially reflects an enriched mantle source rather than crustal contamination. Fault slivers of the lower crust from the more conductive Lachlan region expose Cambrian boninites and island arc andesites indicative of subduction, a process that can enrich the mantle isotopically, and also electrically, by introducing carbon (graphite) and water (hydrogen).  相似文献   
72.
孙宝璐  钱青  张建新 《岩石学报》2017,33(10):3091-3108
走廊过渡带大佛寺花岗岩为弱过铝质(A/CNK=1.03~1.06),SiO_2(76.7%~78.9%)、全碱(Na2O+K2O=7.7%~8.3%)、Rb(303×10~(-6)~383×10~(-6))、Nb(32×10~(-6)~42×10~(-6))、重稀土(Yb~8×10~(-6))含量以及和FeOT/MgO(6.3~7.6)、Ga/Al(3×10-4)、Rb/Ba(3.0~6.2)比值较高,MgO(~0.1%)、CaO(0.5%~0.6%)含量较低,Ba、Sr、Eu、Ti强烈亏损,属A型花岗岩,其源岩可能为泥质岩。大佛寺花岗岩中锆石δ18O和εHf(t)值分别为7.8‰~8.6‰(平均8.24±0.13‰)和-4.8~-2.0,Hf同位素两阶段亏损地幔模式年龄1540~1717Ma,岩浆温度达到~820℃以上。北祁连造山带北缘金佛寺花岗岩为过铝质(A/CNK=1.0~1.1),SiO_2(65.5%~75.0%)、MgO(0.6%~2.2%)、Fe2O3(1.9%~5.2%)、TiO_2(0.3%~0.8%)含量变化较大,其主量和微量元素特征与北祁连造山带的柴达诺花岗岩相似,源岩可能包括杂砂岩和角闪岩。金佛寺花岗岩的锆石δ18O为7.4%~9.7‰(平均8.03±0.36‰),εHf(t)在-0.5~+1.9之间,Hf同位素两阶段亏损地幔模式年龄为1289~1439Ma,岩浆温度达到800~900℃。走廊过渡带大佛寺花岗岩、北祁连造山带北缘金佛寺花岗岩的锆石U-Pb SIMS年龄分别为426.1±2.8Ma、424.0±1.6Ma,不同构造单元发育同时期岩浆活动以及A型花岗岩的出现,表明在~425Ma北祁连洋盆已经闭合,北祁连造山带及邻区进入到后碰撞拉伸阶段。  相似文献   
73.
江南造山带东段九岭新元古代花岗岩据其岩石学及野外产出特征可分为3个序次的侵入体,由早到晚依次为黑云母花岗闪长岩、英云闪长岩及黑云母二长花岗岩。本次研究的黑云母花岗闪长岩和英云闪长岩中等富硅(SiO_2分别为66.05%~75.78%和67.36%~73.94%),而黑云母二长花岗岩极富硅(SiO_2为73.96%~77.83%)。三者铝饱和指数A/CNK分别为1.53、1.71和1.32,A/NK分别为2.04、2.0和1.39,均显示典型过铝质花岗岩特征;三类岩石单元主体属高钾钙碱性系列。黑云母花岗闪长岩和英云闪长岩SiO_2与MgO、TiO_2、CaO、Fe_2O_3T、Al_2O_3、MnO、V成负相关,但黑云母二长花岗岩这种相关性不明显。黑云母花岗闪长岩和英云闪长岩均富轻稀土元素,(La/Yb)N分别平均为10.1和18.7,具弱Eu负异常(δEu分别为0.11~0.88和0.30~0.72),而黑云母二长花岗岩轻重稀土分馏弱((La/Yb)N=4.70),强烈Eu负异常(δEu=0.18~0.61)。三类岩石均富集大离子亲石元素Cs、Rb、Th、U、K、Pb,明显亏损高场强元素Nb、Ta、Sr、Ti,且锆石εHf(t)变化范围极大,分别介于-6.76~9.22、-1.08~6.63和-0.64~7.96之间。研究区北西侧和南东侧岩体锆石Hf同位素组成存在明显差异,表现为岩体北西部的锆石εHf(t)变化范围高于南东部,锆石tDM2模式年龄多集中在1.6~1.8Ga。综合研究推断本区黑云母花岗闪长岩、黑云母二长花岗岩的源区分别为砂质上地壳和泥质上地壳部分熔融产物,而英云闪长岩则为砂泥质源区部分熔融产物。同时,SE侧岩浆起源深度和岩体剥蚀程度均高于NW侧,且SE侧岩体的成岩时代也略早于NW侧,这暗示了新元古代华夏板块和扬子板块碰撞后的伸展过程中,研究区SE侧岩浆起源深度较深,且形成时代较早,并逐渐向NW侧迁移。另外,花岗质岩石源区由砂质向泥质转变的过程可能也是区域陆壳伸展作用逐渐增大的结果。  相似文献   
74.
通过对前人研究的综述,发现青藏高原新生代地质演化与高原东南缘构造演化密切相关.俯冲下插的印度地壳在藏南发生部分熔融并注入青藏高原中部地壳,这些塑性流变的地壳物质在高原东南缘先后沿两个通道流出高原内部:早期为印支通道,开放时间为35 Ma以前并持续到12 Ma;后期为川滇通道,开放时间为12 Ma至今.由于喜马拉雅东构造结与四川盆地之间强烈的挤压,印支通道不断变窄,并在12 Ma被关闭.两个通道的差异,通道的打开和关闭,造成高原中地壳物质流出速率在中新世发生明显变化,在23 Ma以来流出速率小于注入速率,在12 Ma流出速率最小,部分熔融的印度地壳物质不断滞留于高原地壳内部,使得地势相对平坦、面积巨大的青藏高原逐渐形成并分别向南和向北扩展.通过简单的力学分析,本文将高原腹地变形划分为两个阶段:大于35~23 Ma的造山阶段,受控于造山机制;23 Ma至今的造高原阶段,受控于造高原机制.  相似文献   
75.
邓小华  姚军明  李晶  孙亚莉 《岩石学报》2009,25(11):2739-2746
河南寨凹钼矿床位于东秦岭钼矿带,是近年来新发现的脉状钼矿床.9件辉钼矿样品Re-Os模式年龄介于1603.1±10.8~2031.9±10.2Ma,其中7件样品给出了精确的等时线年龄为1762±31Ma(1σ误差,MSWD=3.6),模式年龄的加权平均值为1753±26Ma(1σ误差,MSWD=3.2),表明寨凹钼矿形成于古元古代或熊耳期,代表着~1.76Ga左右的钼成矿事件.根据区域地质演化,认为寨凹钼矿形成于与熊耳群弧火山岩建造相当的活动大陆边缘岩浆弧背景.寨凹矿床的发现表明,熊耳期成矿事件虽遭受后期多次增生和碰撞造山作用的改造和破坏,但仍可在秦岭造山带最北部保留.  相似文献   
76.
孙洋  马昌前  张超 《地学前缘》2011,18(2):85-99
对大别山造山带的鲁家寨花岗岩进行了锆石U-Pb年代学、锆石Hf同位素和岩石地球化学研究.锆石LA-ICP-MS U-Pb定年结果表明鲁家寨花岗岩形成于新元古代((816±17)Ma).鲁家寨花岗岩总体具有高硅(SiO2 69.13%~75.47%)、准铝-弱过铝(A/CNK=0.98~1.01)的化学组成特征.稀土元素...  相似文献   
77.
Twenty‐four mineral separates from the Arunta Complex, four from the metamorphosed Heavitree Quartzite (White Range Quartzite), and one whole rock sample of metamorphosed Bitter Springs Formation, all from the western part of the White Range Nappe of the Arltunga Nappe Complex, and two samples from the autochthonous basement west of the nappe have been dated by the K‐Ar method. The samples from the basement rocks form two groups. Those in the southern or frontal part of the nappe are of Middle Proterozoic (Carpentarian) age (1660–1368 m.y.), determined on hornblende, biotite, and muscovite. In the northern or rear part of the nappe, all but one of the muscovite samples and two biotites are of Middle Silurian to Early Carboniferous age (431–345 m.y.); the remainder of the biotite dates range from 1775 to 548 m.y. (including the two samples from the autochthon), and two hornblendes gave dates of 1639 and 2132 m.y. respectively. All the muscovite samples from the Heavitree Quartzite, and the whole rock sample from the Bitter Springs Formation gave Early to Middle Carboniferous dates (358–322 m.y.). The findings support the identification of the White Range Quartzite as the metamorphosed part of the Heavitree Quartzite, which in turn supports the interpretation of the structure of the area as a large, basement‐cored fold nappe. In addition, they date the time of the Alice Springs Orogeny as pre‐Late Carboniferous, which agrees with fossil evidence from elsewhere in the area. The Alice Springs Orogeny was accompanied by widespread greenschist facies meta‐morphism that progressively metamorphosed the Heavitree Quartzite and Bitter Springs Formation, and retrogressively metamorphosed the Arunta Complex. However, the basement rocks in the southern part of the nappe escaped this metamorphism and retain a Middle Proterozoic age, thus dating the time of the Arunta Orogeny in this region as Carpentarian or older.  相似文献   
78.
The Neptunist‐Vulcanist controversy has distorted the reputations of both James Hutton and Abraham Gottlob Werner. Among English‐speaking geologists, Hutton is often presented as the Father of Modern Geology, whereas Werner's views are seen as ‘palpably absurd’. Both men made major contributions to geology, but they were men of their age, the second half of the eighteenth century, and remote in their general ideas from those current since Lyell's day in the mid‐nineteenth. Werner was greatly admired by some of his ablest contemporaries, and their admiration becomes inexplicable if we regard his views as ‘palpably absurd’. Historical research in the last few years, reviewed here, is able to show how Werner's views arose and why they seemed persuasive at the time. Some examples of Neptunist observations in Australia in the 1820's are given to show the application and later modification of the theory.  相似文献   
79.
This study provides new structural data that show that the Adaminaby Group is part of the Narooma accretionary complex and has been overprinted by HT/LP metamorphism associated with Middle Devonian Moruya Suite intrusions. The grade of metamorphism based on Kübler Indices is the same in the Wagonga and Adaminaby Groups at Batemans Bay inferring that these rocks were involved in the same accretionary event. White micas in slates of the Adaminaby Group record apparent K–Ar ages of 384.6 ± 7.9 Ma and 395.8 ± 8.1 Ma. These ages are believed to represent the age of Middle to Upper Devonian Buckenbowra Granodiorite. Kübler Index values indicate lower epizonal (greenschist facies) metamorphic conditions and are not influenced by heating in metamorphic aureoles of the plutons. All b cell lattice parameter values are characteristic of intermediate pressure facies conditions although they are lower in the metamorphic aureole of the Buckenbowra Granodiorite than in the country rock, defining two areas with dissimilar baric conditions. East of the Buckenbowra Granodiorite, b cell lattice parameter values outside the contact aureole (x = 9.033 Å; n = 8) indicate P = 4 kb, and assuming a temperature of 300°C, infer a depth of burial of approximately 15 km for these rocks with a geothermal gradient of 20°C/km. In the metamorphic aureole of the Buckenbowra Granodiorite, b cell lattice parameter values (x = 9.021 Å; n = 41) indicate P = 3.1 kb inferring exhumation of the Adaminaby Group rocks to a depth of approximately 11 km prior to intrusion. A geothermal gradient of 36°C/km operated in the aureole during intrusion. An extensional back-arc environment prevailed in the Adaminaby Group during the Middle to Upper Devonian.  相似文献   
80.
Abstract

Potentially mineralised Paleozoic basement rocks in the southern Thomson Orogen region of southern Queensland and northern New South Wales are covered by varying thicknesses of Mesozoic to Cenozoic sediments. To assess cover thickness and methods for estimating depth to basement, we collected new airborne electromagnetic (AEM), seismic refraction, seismic reflection and audio-frequency magnetotelluric data and combined these with new depth to magnetic basement models from airborne magnetic line data and ground gravity data along selected transects. The results of these investigations over two borehole sites, GSQ Eulo 1 and GSQ Eulo 2, show that cover thickness can be reliably assessed to within the confidence limits of the various techniques, but that caveats exist regarding the application of each of the disciplines. These techniques are part of a rapid-deployment explorers’ toolbox of geophysical techniques that have been tested at two sites in Australia, the Stavely region of western Victoria, and now the southern Thomson Orogen in northern New South Wales and southern Queensland. The results shown here demonstrate that AEM and ground geophysics, and to a lesser extent depth to magnetic source modelling, can produce reliable results when applied to the common exploration problem of determining cover thickness. The results demonstrate that portable seismic systems, designed for geotechnical site investigations, are capable of imaging basement below 300 m of unlithified Eromanga Basin cover as refraction and reflection data. The results of all methods provide much information about the nature of the basement–cover interface and basement at borehole sites in the southern Thomson Orogen, in that the basement is usually weathered, the interface has paleotopography, and it can be recognised by its density, natural gamma, magnetic susceptibility and electrical conductivity contrasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号