首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1307篇
  免费   398篇
  国内免费   368篇
测绘学   51篇
大气科学   20篇
地球物理   673篇
地质学   1089篇
海洋学   86篇
天文学   7篇
综合类   45篇
自然地理   102篇
  2024年   5篇
  2023年   22篇
  2022年   36篇
  2021年   45篇
  2020年   46篇
  2019年   75篇
  2018年   63篇
  2017年   72篇
  2016年   63篇
  2015年   70篇
  2014年   107篇
  2013年   96篇
  2012年   56篇
  2011年   65篇
  2010年   81篇
  2009年   82篇
  2008年   101篇
  2007年   67篇
  2006年   103篇
  2005年   91篇
  2004年   84篇
  2003年   67篇
  2002年   77篇
  2001年   48篇
  2000年   49篇
  1999年   57篇
  1998年   46篇
  1997年   50篇
  1996年   52篇
  1995年   41篇
  1994年   35篇
  1993年   23篇
  1992年   19篇
  1991年   10篇
  1990年   12篇
  1989年   12篇
  1988年   9篇
  1987年   6篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   10篇
  1977年   2篇
  1954年   6篇
排序方式: 共有2073条查询结果,搜索用时 125 毫秒
21.
In the central part of the internal Western Alps, widespread multidirectional normal faulting resulted in an orogen-scale radial extension during the Neogene. We revisit the frontal Piémont units, between Doire and Ubaye, where contrasting lithologies allow analysing the interference with the N–S trending Oligocene compressive structures. A major extensional structure is the orogen-perpendicular Chenaillet graben, whose development was guided by an E–W trending transfer fault zone between the Chaberton backfold to the north and the Rochebrune backthrust to the south. The Chaberton hinge zone was passively crosscut by planar normal faults, resulting in a E–W trending step-type structure. Within the Rochebrune nappe, E–W trending listric normal faults bound tilted blocks that slipped northward along the basal backthrust surface reactivated as an extensional detachment. Gravity-driven gliding is suggested by the general northward tilting of the structure in relation with the collapse of the Chenaillet graben. The stress tensors computed from brittle deformation analysis confirm the predominance of orogen-parallel extension in the entire frontal Piémont zone. This can be compared with the nearby Briançonnnais nappe stack where the extensional reactivation of thrust surfaces locally resulted in prominent orogen-perpendicular extension. Such a contrasting situation illustrates how the main direction of the late-Alpine extension may be regionally governed by the nature and orientation of the pre-existing structures inherited from the main collision stage.  相似文献   
22.
湘东北中生代基性岩脉岩石地球化学及构造意义   总被引:8,自引:1,他引:8  
湘东北中生代发育以辉绿岩类和煌斑岩类为代表的基性岩脉,属陆内拉斑玄武岩系,部分煌斑岩属于碱性系列。岩石富集LREE,δEu负异常不明显,其形成主要受软流圈地幔部分熔融作用制约。煌斑岩类微量元素总体上具有洋岛玄武岩(OIB)岩浆源区特征,富集Nd、P、Cs而K、Rb、Sr、U、Th等富集程度不明显,Ta、Nb略有富集。辉绿岩类表现出Ta、Nb、Ti亏损,但LILE并不富集,反映地壳混染程度的增强。基性岩脉形成于陆内拉张带的构造环境,岩浆活动未受到中生代大洋板块俯冲的影响。基性岩脉在时、空及物质组成上与湘东南玄武质岩石基本一致,属于整个湘东南岩石圈拉张-减薄带的一部分。  相似文献   
23.
The Gulf of Corinth in central Greece is an active normal fault zone with particularly clear evidence of isostatic footwall uplift, constrained by Quaternary marine terraces, and hanging-wall subsidence and sedimentation. It is bounded to the south by a Pliocene to Early Pleistocene sedimentary basin, which is now eroding into the Gulf. Previous work has suggested that the relief across this region has increased dramatically since the Early Pleistocene, due to the isostatic response to increased rates of footwall erosion and hanging-wall sedimentation. It is indeed assumed here that incision accompanying the draw-down of global sea-level at 0.9 Ma, during the first major Pleistocene glaciation, initiated the erosion of the basin south of the Gulf of Corinth and so abruptly increased the sedimentation rate in the Gulf. The resulting transient thermal and isostatic response to these changes is modelled, with the subsiding depocentre and eroding sediment source coupled by flow in the lower continental crust. The subsequent enhancement of relief, involving an increase in bathymetry from near zero to 900 m and 500 m of uplift of the eroding land surface in the sediment source, is shown to be a direct consequence of this change. The model is sensitive to the effective viscosity of the lower crust, and can thus resolve this parameter by matching observations. A value of 6×1019 Pa s is indicated, suggesting a viscosity at the Moho no greater than 1018 Pa s. Similar transient topographic effects caused by increased rates of sedimentation and erosion are likely to be widespread within the geological record, suggesting that this coupling process involving flow in the weak lower crust may be of major geological and geomorphological importance.  相似文献   
24.
Lithoprobe and industry seismic profiles have furnished evidence of major zones of easterly dipping Grenville deformed crust extending southwest from exposed Grenville rocks north of Lake Ontario. Additional constraints on subsurface structure limited to the postulated Clarendon–Linden fault system south of Lake Ontario are provided by five east–west reflection lines recorded in 1976. Spatial correlations between seismic structure and magnetic anomalies are described from both Lake Ontario and the newly reprocessed New York lines.In the Paleozoic to Precambrian upper crust, the New York seismic sections show: (1) An easterly thickening wedge of subhorizontal Paleozoic strata unconformably overlying a Precambrian basement whose surface has an apparent regional easterly dip of 1–2°. Minor apparent normal offsets, possibly on the order of tens of meters, occur within the Paleozoic section. The generally poorly reflective unconformity may be locally characterized by topographic relief on the order of 100 m; (2) Apparent local displacement on the order of 90 m at the level of the Black River Group diminishes upward to little or no apparent offset of Queenston Shale; (3) Within the limited seismic sections, there appears to be no evidence that the complete upper crustal section is vertically or subvertically offset; (4) Dipping structure in the Paleozoic strata (15° to 35°) resembles some underlying Precambrian basement elements; (5) The surface continuity of inferred faults constituting the Clarendon–Linden system is not strongly supported by the seismic data.Beneath the Paleozoic strata, the seismic sections show both linear and arcuate reflector geometry with easterly apparent dips of 15° to 35° similar to the deep structures imaged on seismic lines from nearby Lake Ontario and on Lithoprobe lines to the north. The similarity supports an extension of easterly dipping Central Metasedimentary Belt structures of the Grenville orogen from southern Ontario to beneath western New York State.From a comparison of the magnetic and gravity fields with the New York seismic sections, we suggest: (1) The largely nonmagnetic Paleozoic strata appear to contribute negligibly to magnetic anomalies. Seismically imaged fractures in the New York Paleozoic strata appear to lie mainly west of a positive gravity anomaly. The relationship between magnetic and gravity anomalies and the changes in the geometry of interpreted Precambrian structures remains enigmatic; (2) North to northeast trending curvilinear magnetic and gravity anomalies parallel, but are not restricted to the principal trend of the postulated Clarendon–Linden fault system. Paleozoic fractures of the Clarendon–Linden system may partly overlie a southward extension of the Composite Arc Belt boundary zone.  相似文献   
25.
About 30 samples representing major lithologies of Sulu ultrahigh-pressure (UHP) metamorphic rocks were collected from surface exposures and exploration wells, and compressional (Vp) and shear wave (Vs) velocities and their directional dependence (anisotropy) were determined over a range of constant confining pressures up to 600 MPa and temperatures ranging from 20 to 600 °C. Samples range in composition from acidic to ultramafic. P- and S-wave velocities measured at 600 MPa vary from 5.08 to 8.64 km/s and 2.34 to 4.93 km/s, respectively. Densities are in the range from 2.60 to 3.68 g/cm3. To make a direct tie between seismic measurements (refraction and reflection) and subsurface lithologies, the experimental velocity data (corresponding to shallow depths) were used to calculate velocity profiles for the different lithologies and profiles of reflection coefficients at possible lithologic interfaces across the projected 5000-m Chinese Continental Scientific Drilling Program (CCSD) crustal segment. Comparison of calculated in situ velocities with respective intrinsic velocities suggests that the in situ velocities at shallow depths are lowered by an increased abundance of open microcracks. The strongly reflective zone beneath the Donghai drill site can be explained by the impedance contrasts between the different lithologies. Contacts between eclogite/peridotite and felsic rocks (gt-gneiss, granitic gneiss), in particular, may give rise to strong seismic reflections. In addition, shear-induced (lattice preferred orientation (LPO)-related) seismic anisotropy can increase reflectivity. For the explanation of the high velocity bodies (>6.4 km/s) around 1000 m and below 3200-m depth, large proportions of eclogite/peridotite (about 40 and 30 vol.%, respectively) are needed.  相似文献   
26.
We have collected about 150 magnetotelluric (MT) soundings in northeastern Nevada in the region of the Ruby Mountains metamorphic core complex uplift and southern Carlin mineral trend, in an effort to illuminate controls on core complex evolution and deposition of world-class gold deposits. The region has experienced a broad range of tectonic events including several periods of compressional and extensional deformation, which have contributed to the total expression of electrical resistivity. Most of the soundings reside in three east–west profiles across increasing degrees of core uplift to the north (Bald Mountain, Harrison Pass, and Secret Pass latitudes). One short cross-line was also taken to assess an east–west structure to the north of the northern profile. Model resistivity cross-sections were derived from the MT data using a 2-D inversion algorithm, which damps departures of model parameters from an a priori structure. Geological interpretation of the resistivity combines previous seismic, potential field and isotope models, structural and petrological models for regional compression and extension, and detailed structural/stratigraphic interpretations incorporating drilling for petroleum and mineral exploration. To first order, the resistivity structure is one of a moderately conductive, Phanerozoic sedimentary section fundamentally disrupted by intrusion and uplift of resistive crystalline rocks. Late Devonian and early Mississippian shales of the Pilot and Chainman Formations together form an important conductive marker sequence in the stratigraphy and show pronounced increases in conductance (conductivity–thickness product) from east to west. These increases are attributed to graphitization caused by Elko–Sevier era compressional shear deformation and possibly by intrusive heating. The resistive crystalline central massifs adjoin the host stratigraphy across crustal-scale, steeply dipping fault zones. The zones provide pathways to the lower crust for heterogeneous, upper crustal induced, electric current flow. Resistive core complex crust appears steeply bounded under the middle of the neighboring grabens and not to deepen at a shallow angle to arbitrary distances to the west. The numerous crustal breaks imaged with MT may contribute to the low effective elastic thickness (Te) estimated regionally for the Great Basin and exemplify the mid-crustal, steeply dipping slip zones in which major earthquakes nucleate. An east–west oriented conductor in the crystalline upper crust spans the East Humboldt Range and northern Ruby Mountains. The conductor may be related to nearby graphitic metasediments, with possible alteration by middle Tertiary magmatism. Lower crustal resistivity everywhere under the profiles is low and appears quasi one-dimensional. It is consistent with a low rock porosity (<1 vol.%) containing hypersaline brines and possible water-undersaturated crustal melts, residual to the mostly Miocene regional extension. The resistivity expression of the southern Carlin Trend (CT) in the Pinon Range is not a simple lineament but rather a family of structures attributed to Eocene intrusion, stratal deformation, and alteration/graphitization. Substantial reactivation or overprinting by core complex uplift or Basin–Range extensional events seems likely. We concur with others that the Carlin Trend may result in part from overlap of the large Eocene Northeast Nevada Volcanic Field with Precambrian–Paleozoic deep-water clastic source rocks thickening abruptly to the west of the Pinon Range, and projecting to the north–northwest.  相似文献   
27.
Gravity and magnetic data were collected and used to study the crustal structure of Jordan. Three new geophysical maps of Jordan were created: a Moho discontinuity map, a crystalline basement surface map, and a map showing the lowest limit of magnetic blocks. Depths of the Curie Isotherm were also calculated. Results indicate that the depth to the Moho discontinuity in Jordan varies from 32 to 33 km in the northwest to 38 km in the southeast. The basement complex rocks outcrop on the surface in the southwest but lie at about 8 km in the northeast. The Curie Isotherm (585 °C) lies at a depth of about 10 km in the area east of the Dead Sea and dips southeastward towards the Al-Sirhan (Wadi Sirhan), southeast Jordan, where it is located at 35 km depth. Local isostasy of rock masses (blocks) in Jordan does not occur. Nevertheless, this does not rule out the possible existence of isostasy in a regional scale at greater depths within the mantle.  相似文献   
28.
新疆伽师及邻近地区现今地壳形变的GPS监测与研究   总被引:8,自引:2,他引:8       下载免费PDF全文
利用高精度数据软件对伽师及邻近地区的GPS监测网观测数据进行计算分析(基线精度达到了 10 - 8~ 10 - 9) ,获得了该地区的现今地壳形变速率图 .结果表明 ,伽师及邻近地区在印度板块的推挤作用下 ,地壳正快速缩短变形 ,主压应力为近南北方向 .各地块运动速率不同 ,平均应变率为 0 .0 4× 10 - 6 /a .  相似文献   
29.
川滇菱形块体边界的现今地壳形变   总被引:10,自引:2,他引:10  
吕弋培  廖华  苏琴  王兰 《中国地震》2002,18(1):28-37
依据川滇菱形块体边界带上所有跨断层测量资料,分析了各场地所处断裂的近期形变特征,结果表明;川滇菱形块体北段形变活动逐渐减弱,南段逐渐加强,各条断裂分别显示出不同的变形特征;菱形块体的现今水平形变以左旋走滑运动为主,垂直形变速度较低,且呈上盘抬升与下降交替出现的运动特征,部分场地的形变异常变化与其邻近的地震活动密切相关。  相似文献   
30.
中国台湾南部及其周边岛屿现今地壳形变的位错模型   总被引:22,自引:3,他引:22       下载免费PDF全文
通过建立非震形变的位错模型,用混合全局反演方法,拟合了中国台湾南部1990-1995年间的GPS观测资料.根据地质构造和地震观测,构筑了包括6个刚性块体和19个断层的简单模型.反演结果表明,菲律宾海板块以(69±2)mm/a,方向为317°±2°的速度与欧亚板块会聚,其中约一半的会聚率在台东纵谷消耗掉,另外部分则平均分配在其西边的块体交界处.菲律宾海板块和中央山脉地质区均向西北方向挤压,过了中央山脉后,块体运动呈扇形分布,与应力方向一致.西部麓山地质区与滨海平原地质区交界处的断层均以逆冲分量为主,由南向北倾角逐渐变小,断层宽度一般为10km左右,均表现为强锁定,历史上的大地震多发生在这个地区.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号