首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3770篇
  免费   657篇
  国内免费   992篇
测绘学   3篇
大气科学   2篇
地球物理   258篇
地质学   4688篇
海洋学   218篇
天文学   8篇
综合类   110篇
自然地理   132篇
  2024年   9篇
  2023年   34篇
  2022年   63篇
  2021年   90篇
  2020年   146篇
  2019年   137篇
  2018年   162篇
  2017年   241篇
  2016年   258篇
  2015年   195篇
  2014年   212篇
  2013年   269篇
  2012年   229篇
  2011年   248篇
  2010年   186篇
  2009年   269篇
  2008年   263篇
  2007年   286篇
  2006年   233篇
  2005年   219篇
  2004年   176篇
  2003年   185篇
  2002年   164篇
  2001年   156篇
  2000年   155篇
  1999年   162篇
  1998年   100篇
  1997年   118篇
  1996年   106篇
  1995年   62篇
  1994年   66篇
  1993年   41篇
  1992年   34篇
  1991年   25篇
  1990年   21篇
  1989年   13篇
  1988年   10篇
  1987年   12篇
  1986年   9篇
  1985年   7篇
  1984年   7篇
  1983年   10篇
  1982年   4篇
  1981年   5篇
  1980年   8篇
  1977年   1篇
  1976年   2篇
  1973年   3篇
  1972年   3篇
  1971年   5篇
排序方式: 共有5419条查询结果,搜索用时 31 毫秒
61.
The Alexandra Formation, located in the Northwest Territories of Canada, is formed of a Late Devonian (Frasnian) reef system that developed on a gently sloping, epicontinental ramp in the Western Canada Sedimentary Basin. High‐resolution sequence stratigraphic analysis of its deposits delineates two reef complexes that are separated by a Type I sequence boundary. The second reef complex developed on the outer ramp, basinward of the first, after sea‐level fell ≈17 m. Stratigraphic complexity of the second reef complex was a result of its initiation during forced regression, and its development through an entire cycle of sea‐level rise followed by sea‐level fall. Its highstand systems tract was not characterized by high rates of carbonate production or sediment shedding. Rather, these features took place as sea‐level fell, after its highstand systems tract. The sequence stratigraphic framework of this regressive reef system highlights a number of depositional parameters that differ from high‐relief, shelf‐situated reef systems with steep, narrow margins. These have implications for understanding the controls on the development of ramp‐situated reef systems, and the nature of reef systems with gently sloping profiles. This study demonstrates that the development of stromatoporoid reef systems may be far more complex than generally realized, and that high‐resolution sequence stratigraphy may provide the tools for better understanding of complex, often enigmatic, aspects of these systems.  相似文献   
62.
The Bridport Sand Formation is an intensely bioturbated sandstone that represents part of a mixed siliciclastic‐carbonate shallow‐marine depositional system. At outcrop and in subsurface cores, conventional facies analysis was combined with ichnofabric analysis to identify facies successions bounded by a hierarchy of key stratigraphic surfaces. The geometry of these surfaces and the lateral relationships between the facies successions that they bound have been constrained locally using 3D seismic data. Facies analysis suggests that the Bridport Sand Formation represents progradation of a low‐energy, siliciclastic shoreface dominated by storm‐event beds reworked by bioturbation. The shoreface sandstones form the upper part of a thick (up to 200 m), steep (2–3°), mud‐dominated slope that extends into the underlying Down Cliff Clay. Clinoform surfaces representing the shoreface‐slope system are grouped into progradational sets. Each set contains clinoform surfaces arranged in a downstepping, offlapping manner that indicates forced‐regressive progradation, which was punctuated by flooding surfaces that are expressed in core and well‐log data. In proximal locations, progradational shoreface sandstones (corresponding to a clinoform set) are truncated by conglomerate lags containing clasts of bored, reworked shoreface sandstones, which are interpreted as marking sequence boundaries. In medial locations, progradational clinoform sets are overlain across an erosion surface by thin (<5 m) bioclastic limestones that record siliciclastic‐sediment starvation during transgression. Near the basin margins, these limestones are locally thick (>10 m) and overlie conglomerate lags at sequence boundaries. Sequence boundaries are thus interpreted as being amalgamated with overlying transgressive surfaces, to form composite erosion surfaces. In distal locations, oolitic ironstones that formed under conditions of extended physical reworking overlie composite sequence boundaries and transgressive surfaces. Over most of the Wessex Basin, clinoform sets (corresponding to high‐frequency sequences) are laterally offset, thus defining a low‐frequency sequence architecture characterized by high net siliciclastic sediment input and low net accommodation. Aggradational stacking of high‐frequency sequences occurs in fault‐bounded depocentres which had higher rates of localized tectonic subsidence.  相似文献   
63.
Pollen and diatom assemblages, and peat stratigraphies, from a coastal wetland on the northern shore of Lake Erie were used to analyze water level and climatic changes since the middle Holocene and their effects on wetland plant communities. Peat deposition began 4700 cal yr B.P. during the Nipissing II transgression, which was driven by isostatic rebound. At that time, a diatom-rich wild rice marsh existed at the site. Water level dropped at the end of the Nipissing rise at least 2 m within 200 yr, leading to the development of shallower-water plant communities and an environment too dry for most diatoms to persist. The sharp decline in water level was probably driven primarily by outlet incision, but climate likely played some role. The paleoecological records provide evidence for post-Nipissing century-scale transgressions occurring around 2300, 1160, 700 and 450 cal yr B.P. The chronology for these transgressions correlates with other studies from the region and implies climatic forcing. Peat inception in shallow sloughs across part of the study area around 700 cal yr B.P. coincides with the Little Ice Age. These records, considered alongside others from the region, suggest that the Little Ice Age may have resulted in a wetter climate across the eastern Great Lakes region.  相似文献   
64.
Abstract. Lermontovskoe tungsten skarn deposit in central Sikhote-Alin is concluded to have formed at 132 Ma in the Early Cretaceous, based on K-Ar age data for muscovite concentrates from high-grade scheelite ore and greisenized granite. Late Paleozoic limestone in Jurassic - early Early Cretaceous accretionary complexes was replaced during hydrothermal activity related to the Lermontovskoe granodiorite stock of reduced type. The ores, characterized by Mo-poor scheelite and Fe3+- poor mineral assemblages, indicate that this deposit is a reduced-type tungsten skarn (Sato, 1980, 1982), in accordance with the reduced nature of the granodiorite stock.
The Lermontovskoe deposit, the oldest mineralization so far known in the Sikhote-Alin orogen, formed in the initial stage of Early Cretaceous felsic magmatism. The magmatism began shortly after the accretionary tectonics ceased, suggesting an abrupt change of subduction system. Style of the Early Cretaceous magmatism and mineralization is significantly different between central Sikhote-Alin and Northeast Japan; reduced-type and oxidized-type, respectively. The different styles may reflect different tectonic environments; compressional and extensional, respectively. These two areas, which were closer together before the opening of the Japan Sea in the Miocene, may have been juxtaposed under a transpressional tectonic regime after the magmatism.  相似文献   
65.
Paleontological study of Upper Jurassic and Lower Cretaceous sediments recovered by boreholes in the Agan-Vakh and Nadym-Vengapur interfluves clarified environments of their deposition. As is shown, influx of siliciclastic material to central areas of the West Siberian sea basin varied through time. Taxonomic composition and ecological structure of nektonic and benthic fossil assemblages are analyzed and considered in terms of environmental factors such as hydrodynamics, aeration, temperature, and salinity of seawater.  相似文献   
66.
Results of palaeomagnetic investigations of the Lower Cretaceous teschenitic rocks in the Silesian unit of the Outer Western Carpathians in Poland bring evidence for pre-folding magnetization of these rocks. The mixed-polarity component reveals inclinations, between 56° and 69°, which might be either of Cretaceous or Tertiary age. Apparently positive results of fold and contact tests in some localities and presence of pyrhotite in the contact aureole suggest that magnetization is primary, although a Neogene or earlier remagnetization cannot be totally excluded since inclination-only test between localities gives 'syn-folding' results. Higher palaeoinclinations (66°–69°) correlate with a younger variety of teschenitic rocks dated for 122–120 Ma, while lower inclinations (56°–60°) with an older variety (138–133 Ma). This would support relatively high palaeolatitudes for the southern margin of the Eurasian plate in the late part of the Early Cretaceous and relatively quick northward drift of the plate in this epoch, together with the Silesian basin at its southern margin. Declinations are similar to the Cretaceous–Tertiary palaeodeclinations of stable Europe in the eastern part of the studied area but rotated ca. 14°–70° counter-clockwise in the western part. This indicates, together with older results from Czech and Slovakian sectors of the Silesian unit, a change in the rotation pattern from counter-clockwise to clockwise at the meridian of 19°E. The rotations took place before the final collision of the Outer Carpathians nappe stack with the European foreland.  相似文献   
67.
Four successive assemblages of Berriasian brachiopods distinguished for the first time in the Crimea are correlated with concurrent subdivisions of the ammonoid scale. Berriasian brachiopods are represented by 44 species of 27 genera and 14 families, which are most complete in terms of taxonomic composition as compared to other concurrent brachiopod faunas known elsewhere. The assemblages are dominated by local species. As is proved, the Berriasian brachiopods studied are appropriate for age determination, subdivision and correlation of their host deposits. Their geographic distribution that has been analyzed elucidates connections of the Berriasian sea basins within the Mediterranean paleozoogeographic region.  相似文献   
68.
In southeast Anatolia, there are number of tectonomagmatic units in the Kahramanmaraş–Malatya–Elazığ region that are important in understanding the geological evolution of the southeast Anatolian orogenic belt during the Late Cretaceous. These are (a) metamorphic massifs, (b) ophiolites, (c) ophiolite-related metamorphics and (d) granitoids. The granitoids (i.e. Göksun–Afşin in Kahramanmaraş, Doğanşehir in Malatya and Baskil in Elazığ) intrude all the former units in a NE–SW trending direction. The granitoid in Göksun–Afşin (Kahramanmaraş) region is mainly composed of granodioritic and granitic in composition. The granodiorite contains a number of amphibole-bearing mafic microgranular enclaves of different sizes, whereas the granite is intruded by numerous aplitic dikes. The granitoid rocks have typical calcalkaline geochemical features. The REE- and Ocean ridge granite-normalized multi-element patterns and tectonomagmatic discrimination diagrams, as well as biotite geochemistry suggest that the granitoids were formed in a volcanic arc setting. The K–Ar geochronology of the granitoid rocks yielded ages ranging from 85.76±3.17 to 77.49±1.91 Ma. The field, geochemical and geochronological data suggest the following Late Cretaceous tectonomagmatic scenario for southeast Anatolia. The ophiolites were formed in a suprasubduction zone tectonic setting whereas the ophiolite-related metamorphic rocks formed either during the initiation of intraoceanic subduction or late-thrusting (∼90 Ma). These units were then overthrust by the Malatya–Keban platform during the progressive elimination of the southern Neotethys. Thrusting of the Malatya–Keban platform over the ophiolites and related metamorphic rocks was followed by the intrusion of the granitoids (88–85 Ma) along the Tauride active continental margin in the southern Neotethys.  相似文献   
69.
塔里木盆地东河砂岩沉积和储层特征及综合分析   总被引:21,自引:0,他引:21  
东河砂岩是一套海侵初期的沉积产物,东河砂岩不是一个等时沉积体,相当于晚泥盆世晚期至早石炭世早期沉积,具体沉积时间各地有差异。由于东河砂岩是覆盖广泛的海侵初期沉积,因此具有海侵初期填平补齐的特征,其沉积相决定于海侵的速度、沉积物的供给和海侵前的古地貌。塔北地区受塔北古隆起的阻挡,海水在古隆起周围滞留时间较长,又有较粗粒的物源供给,其沉积产物主要是滨岸海滩沉积;塔中地区由于地形复杂,沉积类型也比较复杂,底部砾岩段有河流相沉积,而块状砂岩段和砂砾岩段有河口湾和滨岸海滩沉积,不同段在成分、分选性和粒级上有较大的差异;而其它低平地区主要是海侵期快速的滨岸和陆架沉积。受沉积因素影响,东河砂岩有效储层的分布具有地域性;除沉积因素外,低的地温梯度和短期的深埋藏是优质储层发育的重要控制因素。  相似文献   
70.
Gzhelian deposits established in Iran for the first time are described. They rest with a considerable hiatus on the Moscovian deposits constituting, along with Asselian strata, an integral carbonate succession of the Zaladu Formation in eastern Iran. The Zaladu Formation is correlative with the Vazhnan Formation of the Abadeh region (central Iran) and the Dorud Formation of the Elburz (Alborz) Mountains. An assemblage of Gzhelian fusulinids from the studied section is well comparable with the assemblage of the Ultradaixina bosbytauensis Zone distinguished in the uppermost Gzhelian of the Darvaz, Fergana, the Southern Urals, Donetsk Basin, and Carnic Alps. Two new species of the genus Schellwienia (Sch. anarakensis and Sch. stocklini) are described. Gzhelian and Asselian fusulinids found in the section are figured in two paleontological plates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号