首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   123篇
  国内免费   77篇
测绘学   35篇
大气科学   18篇
地球物理   121篇
地质学   298篇
海洋学   57篇
天文学   20篇
综合类   27篇
自然地理   73篇
  2024年   1篇
  2023年   4篇
  2022年   8篇
  2021年   18篇
  2020年   17篇
  2019年   23篇
  2018年   17篇
  2017年   26篇
  2016年   22篇
  2015年   30篇
  2014年   23篇
  2013年   26篇
  2012年   19篇
  2011年   26篇
  2010年   21篇
  2009年   30篇
  2008年   38篇
  2007年   31篇
  2006年   29篇
  2005年   24篇
  2004年   24篇
  2003年   25篇
  2002年   12篇
  2001年   24篇
  2000年   21篇
  1999年   19篇
  1998年   12篇
  1997年   18篇
  1996年   6篇
  1995年   10篇
  1994年   14篇
  1993年   6篇
  1992年   5篇
  1991年   2篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1986年   1篇
  1985年   2篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有649条查询结果,搜索用时 15 毫秒
41.
The consistent geographical and altitudinal distribution of autochthonous block fields (mantle of bedrock weathered in situ) and trimlines in southern Norway suggests a multi-domed and asymmetric Late Weichselian ice sheet. Low-gradient ice-sheet profiles in the southern Baltic region, in the North Sea, and along the outer fjord areas of southern Norway, are best explained by movement of ice on a bed of deforming sediment, although water lubricated sliding or a combination of the two, may not be excluded. The ice-thickness distribution of the Late Weichselian Scandinavian ice sheet is not in correspondence with the modern uplift pattern of Fennoscandia. Early Holocene crustal rebound was apparently determined by an exponential, glacio-isostatic rise. Later, however, crustal movements appear to have been dominated by large-scale tectonic uplift of the Fennoscandian Shield, centred on the Gulf of Bothnia, the region of maximum lithosphere thickness.  相似文献   
42.
The AltiKa altimeter onboard SARAL is a joint CNES/ISRO mission launched in February 2013 that has the same 35 days repeat orbit of the previous European altimeters, Envisat, and ERS-1/2. SARAL/AltiKa is thus a unique opportunity to extend the repeat observations of this orbit that have been surveyed since 1991. However, the altimeter operates in Ka-band, which is higher than the previous frequencies, and offers new paths of investigation. The penetration depth is theoretically reduced from around 10 m in Ku-band to less than 1 m in Ka-band, such that the volume echo originates from the near subsurface. Second, the sharper antenna aperture leads to a narrower leading edge that reduces the impact of the ratio between surface and volume echoes of the height retrieval. Indeed, the spatial and temporal observations of AltiKa at cross-over points and along-track indicate that the impact of backscatter changes on the height decreasesfrom 0.3 m/dB for the Ku-band to only 0.05 m/dB for the Ka-band. Therefore, the height measurement is stable over time. Moreover, the volume echo in the Ka-band results from the near subsurface layer and is mostly controlled by ice grain size, unlike the Ku-band.  相似文献   
43.
Radar altimetry provides an important geophysical parameter, backscatter coefficient (σ0), which is useful in studying target surface characteristics. Ku-band (Oceansat-2 scatterometer- OSCAT) and Ka-band (SARAL-AltiKa altimeter) data are concurrently used to characterize polar surface features over the Antarctic region. Maximum-likelihood classification has been employed to classify combined data set (AltiKa and OSCAT) for discrimination among sea ice, open water, and ice sheet (interior and exterior). The sea ice region obtained using the current approach has been compared with sea ice boundary derived from passive microwave data.  相似文献   
44.
The current sheet in Earth’s magnetotail often flaps, and the flapping waves could be induced propagating towards the dawn and dusk flanks, which could make the current sheet dynamic. To explore the dynamic characteristics of current sheet associated with the flapping motion holistically and provide reasonable physical interpretations, detailed direct calculation and analysis have been applied to one approximate analytic model of magnetic field in the flapping current sheet. The main results from the model demonstrate: (1) the magnetic fluctuation amplitude is attenuated from the center of current sheet to the lobe regions; The larger wave amplitude would induce the larger magnetic amplitude; (2) the curvature of magnetic field lines (MFLs), with maximum at the center of current sheet, is only dependent on the displacement Z along the south-north direction from the center of current sheet, regardless of the tilt of current sheet; (3) the half-thickness of neutral sheet, h, the minimum curvature radius of MFLs, Rcmin, and the tilt angle of current sheet, δ, satisfies h=Rcmin cos δ; (4) the gradient of magnetic strength forms a double-peak profile, and the peak value would be more intense if the local current sheet is more tilted; (5) current density j and its jy, jz components reach the extremum at the center of CS. j and jz would be more intense if the local current sheet is more tilted, but it is not the case for jy; and (6) the field-aligned component of current density mainly appears in the neutral sheet, and the sign of it would change alternatively as the flapping waves passing by. To check the validity of the model, one simulation on the virtual measurements has been made, and the results are in well consistence with actual observations of Cluster.  相似文献   
45.
The Whippoorwill Formation is a gleyed diamicton that is present locally within bedrock depressions beneath the oldest glacial till in northern Missouri, USA. Stratigraphy, paleomagnetism, and cosmogenic-nuclide burial ages show that it was deposited between the Matuyama-Gauss magnetostratigraphic boundary at 2.58 Ma and the first advance of the Laurentide ice sheet into Missouri at 2.47 ± 0.19 Ma. High cosmogenic-nuclide concentrations also show that the constituents of the Whippoorwill Formation experienced long exposure at a stable landscape surface with erosion rates of 1-2 m/Ma. However, cosmogenic-nuclide concentrations are invariant with depth below the Whippoorwill Formation surface, indicating active mixing of the soil profile shortly before burial by till. The Whippoorwill Formation retains numerous features indicative of cryoturbation. Therefore, we interpret it as a buried Gelisol, a soil formed under periglacial conditions in the presence of permafrost. At the onset of Northern Hemisphere glaciation, climate cooling established permafrost conditions and accelerated erosion by inducing landscape instability. Thus, weathered regolith materials were mobilized and redeposited by gelifluction shortly before the ice sheet overrode the landscape.  相似文献   
46.
Surface melt has great impacts on the Greenland Ice Sheet (GrlS) mass balance and thereby has become the focus of significant GrlS research in recent years. The production, transport, and release processes of surface meltwater are the keys to understanding the poten- tial impacts of the GrlS surface melt. These hydrological processes can elucidate the following scientific questions: How much melt- water is produced atop the GrlS? What are the characteristics of the meltwater-formed supraglacial hydrological system? How does the meltwater influence the GrlS motion? The GrlS supraglacial hydrology has a number of key roles and yet continues to be poorly understood or documented. This paper summarizes the current understanding of the GrlS surface melt, emphasizing the three essential supraglacial hydrological processes: (1) meltwater production: surface melt modeling is an important approach to acquire surface melt information, and areas, depths, and volumes of supraglacial lakes extracted from remotely sensed imagery can also provide surface melt information; (2) meltwater transport: the spatial distributions of supraglacial lakes, supraglacial sarams, moulins, and crevasses demonstrate the characteristics of the supraglacial hydrological system, revealing the meltwater transport process; and (3) meltwater release: the release of meltwater into the englacial and the subglacial ice sheet has important but undetermined impacts on the GrlS motion. The correlation between surface runoff and the GrlS motion speed is employed to understand these influences.  相似文献   
47.
Structural relationships between the Neoproterozoic rock complexes of a continental massif,island arc and back-arc basin geodynamic affinities are described and considered in this work based on field observations within the northeastern segment of the Central Taimyr tectonic zone distinguished in the late Hercynian foldthrust belt of Taimyr Peninsula. As is established for the first time,rock complexes of the continental massif with the early Late Riphean( Tonian-Cryogenian) volcanogenic-sedimentary cover occur in the study region as the allochthonous syn- and post-sedimentary thrust sheets buried in or thrust over deposits of a back-arc basin,which accumulated in the terminal Late Riphean( Cryogenian)--initial Vendian( Ediacaran). These and other results of the large-scale structural observations elucidate important details of the region tectonic development in the Late Precambrian,when two lateral ensembles of the Neoproterozoic structures originated in the region. In the first half of the Neoproterozoic,the regional tectonic ensemble included the oceanic plate abut on the continental massif with a primitive volcano-plutonic belt. The subsequent system of an island arc and marginal backarc basin originated in the second half of the Neoproterozoic and existed approximately till the mid-Vendian( Ediacaran) phase of the intense formation of thrust sheets in the region.  相似文献   
48.
????2004??2008???ICESat???????????????GLA12???????????????????????????????????????仯????????????????????????????????????仯??????????????????????????????3 m??????????????????????仯?????????????????????????????????  相似文献   
49.
The Middle Jurassic Khatatba Formation acts as a hydrocarbon reservoir in the subsurface in the Western Desert, Egypt. This study, which is based on core samples from two exploration boreholes, describes the lithological and diagenetic characteristics of the Khatatba Formation sandstones. The sandstones are fine‐ to coarse‐grained, moderately to well‐sorted quartz arenites, deposited in fluvial channels and in a shallow‐marine setting. Diagenetic components include mechanical and chemical compaction, cementation (calcite, clay minerals, quartz overgrowths, and a minor amount of pyrite), and dissolution of calcite cements and feldspar grains. The widespread occurrence of an early calcite cement suggests that the Khatatba sandstones lost a significant amount of primary porosity at an early stage of its diagenetic history. In addition to calcite, several different cements including kaolinite and syntaxial quartz overgrowth occur as pore‐filling and pore‐lining cements. Kaolinite (largely vermicular) fills pore spaces and causes reduction in the permeability of the reservoir. Based on framework grain–cement relationships, precipitation of the early calcite cement was either accompanied by or followed the development of part of the pore‐lining and pore‐filling cements. Secondary porosity development occurred due to partial to complete dissolution of early calcite cements and feldspar. Late kaolinite clay cement occurs due to dissolved feldspar and has an impact on the reservoir quality of the Khatatba sandstones. Open hydraulic fractures also generated significant secondary porosity in sandstone reservoirs, where both fractures and dissolution took place in multiple phases during late diagenetic stages. The diagenesis and sedimentary facies help control the reservoir quality of the Khatatba sandstones. Fluvial channel sandstones have the highest porosities and permeabilities, in part because of calcite cementation, which inhibited authigenic clays or was later dissolved, creating intergranular secondary porosity. Fluvial crevasse‐splay and marine sandstones have the lowest reservoir quality because of an abundance of depositional kaolinite matrix and pervasive, shallow‐burial calcite and quartz overgrowth cements, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
50.
为了明确土壤性质对坡面侵蚀方式作用机制的影响,本研究采用室内模拟降雨试验,选取黄土高原典型暴雨强度,在不同坡度条件下,对两种黄土的坡面侵蚀方式、形态特征、产流产沙过程及其相应径流流速的变化规律进行了研究。结果表明,绥德土径流量明显高于安塞土,10º、15º和20º时前者的平均径流量分别比后者高出51.1%、55.5%和63.0%,且前者更易形成细沟,使得其平均含沙量和平均产沙率分别是后者的1.14~3.59倍和2.50~8.48倍。在片蚀阶段,与绥德土相比,安塞土的含沙量较高,后者的平均含沙量是前者的1.24~1.73倍,但两种土壤的含沙量和产沙规律相同,均表现为先快速增加到最大值,然后逐渐降低到相对稳定状态,该现象证明片蚀的初期阶段主要受控于径流输沙能力,后期受径流的剥蚀能力控制。在细沟侵蚀阶段,绥德土细沟发育以沟头溯源侵蚀为主,崩塌作用频繁,该侵蚀形式不仅控制着细沟形态的总体特征,也导致含沙量和产沙率均急剧增加,该阶段平均含沙量是相应片蚀阶段的3.25~4.34倍。细沟沟口下方坡面存在明显的泥沙沉积带,表明细沟集中水流的搬运能力远高于坡面漫流,细沟侵蚀主要受径流输沙能力控制。两种土壤的径流流速均表现为坡面下部高于坡面上部,径流稳定后高于径流稳定前,总体来看,绥德土和安塞土上坡和径流稳定后的平均流速分别是下坡和径流稳定前的1.4倍、1.25倍和1.75倍、1.29倍,此外细沟侵蚀或侵蚀强度与微地貌形态之间的互馈作用对径流流速也有较大影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号