首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   2篇
  国内免费   10篇
地球物理   46篇
地质学   48篇
海洋学   1篇
天文学   6篇
自然地理   21篇
  2023年   3篇
  2022年   5篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   8篇
  2015年   14篇
  2014年   10篇
  2013年   4篇
  2012年   4篇
  2011年   9篇
  2010年   3篇
  2009年   6篇
  2008年   11篇
  2007年   6篇
  2006年   10篇
  2005年   8篇
  2004年   2篇
  2003年   3篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1993年   1篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
21.
The present study aims at testing the possibility of using the in-situ cosmogenic burial dating technique on deltaic deposits. The sequence analyzed is exposed along the Ligurian coast (north-west Italy) and is made of proximal marine and continental deposits previously considered Pliocene or Plio-Quaternary in age. In the study area two allostratigraphic units were recognized. The lower unit represents the evolution of a small coarse-grained delta developed in a fjord or embayment environment. The coarsening/shallowing upward trend observed within the sections, from bottom to top, suggests that the delta prograded rapidly in the landward portion of the canyon placed opposite to the paleo-river outlet. Within the deltaic sequence the transgressive and highstand system tracts were recognized. The unit 2 is composed by several alluvial fan systems deposited in small incised valleys developed within the previously, uplifted deltaic deposits and successively incised by a braided river system. In-situ produced cosmogenic nuclides were used in order to date the age of the deposition of the deltaic deposits. Results suggest that the studied deltaic sediments belonging to the unit 1 were deposited between 1,300,000 and 200,000 year ago thus during the Lower to Middle Pleistocene, whereas the unit 2 was deposited during the Middle Pleistocene as a consequence of a tectonically driven uplift phase. Furthermore samples collected within the prograding part of the delta show the higher denudation rates. The obtained results demonstrate that burial ages and related erosion rates inferred from cosmogenic nuclides concentrations can be considered as a very useful tool to reconstruct the sea level changes over the past 1 million year.  相似文献   
22.
This study aims at determining the chlorine and chlorine-36 fallout rates in an experimental beech forest site located in NE France (48°31′55″ N, 5°16′8″ E). A monthly record of Cl and 36Cl concentrations in rainfall samples collected above the canopy was performed during two years, from March 2012 to February 2014. The results show that the Cl concentrations mainly originate from sea-spray while the 36Cl concentrations originate from the stratosphere and therefore present a seasonal dependency. Abrupt and important inputs of 36Cl from the stratosphere indeed yield sharp increases of the recorded concentrations during the spring-summer. We also show that a too short sampling period might bias the determined 36Cl fallout rate. To smooth the seasonal and sporadic bursts of 36Cl, a minimum of 6 months sampling period is required. A mean 36Cl fallout rate of (77 ± 21) atoms m−2 s−1 can be deduced from our study, which is 45% higher than the modelled value. This discrepancy suggests more studies aiming at measuring the 36Cl fallout rate worldwide are necessary.  相似文献   
23.
Knowledge of the spatial and temporal variations in Alpine glaciations is essential for reconstructing the regional and global timing of ice ages. This study investigates glacial deposits at the mouth of the Muksu catchment in the northern Pamir using 10Be surface-exposure age dating. We sampled boulders from the furthest downstream recessional moraine (20 samples) and five lateral moraines (41 samples) near the former terminus of the Fedchenko Glacier, the longest (∼72 km) present-day Alpine glacier of the Pamir. After the identification of outliers, the boulder population of the recessional moraine yielded a mean exposure age of 17.5 ± 1.9 ka. The maximum exposure age of the lateral moraines, collected ∼5 km up-valley of the recessional moraine, is 18.2 ± 1.7 ka. The boulder ages reflect glacial deposition during the Last Glacial Maximum (Marine Isotope Stage 2) in the region; they are in accordance with published glacial deposition ages in the western Tian Shan.  相似文献   
24.
Samples from three medieval rock avalanches from the French (Le Claps, Mont Granier) and Austrian Alps (Dobratsch) and a man-made structure, i.e. the Stephansdom in Vienna, have been analysed for in-situ produced 36Cl by accelerator mass spectrometry (AMS). All four sampling sites of independently known exposure duration turned out to be not appropriate as calibration sites for the determination of the 36Cl-production rate from Ca. Indeed, the determination of short exposure ages for dating rock avalanches and man-made structures by 36Cl is hindered dramatically by inheritance, especially for samples characterized by high natCl-concentrations. Generally, there are hints that the theoretical calculation of 36Cl-production from epithermal and thermal neutron-capture on 35Cl is highly underestimated in all existing models, thus, asking for particular precaution if working on high-Cl samples for any project. Hence, this work evidences that potential high inheritance, even for samples reasonably shielded before exhumation, has to be considered especially when dealing with recently exposed surfaces such as glacially polished rocks, alluvial terraces, fault scarps etc.  相似文献   
25.
Loess accumulated on a Bull Lake outwash terrace of Marine Oxygen Isotope Stage 6 (MIS 6) age in southern Jackson Hole, Wyoming. The 9 m section displays eight intervals of loess deposition (Loess 1 to Loess 8, oldest), each followed by soil development. Our age-depth model is constrained by thermoluminescence, meteoric 10Be accumulation in soils, and cosmogenic 10Be surface exposure ages. We use particle size, geochemical, mineral-magnetic, and clay mineralogical data to interpret loess sources and pedogenesis. Deposition of MIS 6 loess was followed by a tripartite soil/thin loess complex (Soils 8, 7, and 6) apparently reflecting the large climatic oscillations of MIS 5. Soil 8 (MIS 5e) shows the strongest development. Loess 5 accumulated during a glacial interval (~ 76-69 ka; MIS 4) followed by soil development under conditions wetter and probably colder than present. Deposition of thick Loess 3 (~ 43-51 ka, MIS 3) was followed by soil development comparable with that observed in Soil 1. Loess 1 (MIS 2) accumulated during the Pinedale glaciation and was followed by development of Soil 1 under a semiarid climate. This record of alternating loess deposition and soil development is compatible with the history of Yellowstone vegetation and the glacial flour record from the Sierra Nevada.  相似文献   
26.
Surface exposure dating of carbonate rocks using cosmogenic 10Be is problematic. We have performed step-wise leaching of calcite-rich samples in order to investigate the reasons for this. Results on different grain size fractions clearly indicate the source of atmospheric 10Be is clay. We demonstrate that partial-leaching procedures, which result in moderate pH levels will not release 10Be (in-situ produced or atmospheric) due to the instant re-absorption on grain surfaces. By contrast, under strongly acidic conditions, all absorbed 10Be is leached from aluminosilicates giving abnormally high 10Be concentrations and consequently exposure ages that are too old. Dating is only possible if samples do not contain any clay minerals or if they can be removed prior to carbonate dissolution.  相似文献   
27.
This study presents a semi-empirical model for quantifying the reduction in the mechanical strength of bedrock beneath actively eroding soil-mantled hillslopes. The strength reduction of bedrock controls the rate of physical disintegration of saprolite, which supplies fresh minerals that are then exposed to intense chemical weathering in soil sections. To determine the values of parameters employed in the model requires knowledge of the denudation rate of the hillslope, the thickness of the soil and saprolite layers, the strength of fresh bedrock, and the threshold strength for physical erosion at the uppermost face of the saprolite. These parameters can be obtained from cosmogenic nuclide analyses for quartz samples from the soil–saprolite boundary and basic field- and laboratory-based investigations. Further testing of the model within a diverse range of climatic, tectonic, and lithologic environments is likely to provide clues to the mechanisms responsible for local and regional variations in the rates of soil production and chemical weathering upon hillslopes.  相似文献   
28.
Estimates of regolith degradation in the McMurdo Dry Valleys of Antarctica are currently based on indirect evidence and ancient ashes at or near the soil surface that suggest excellent preservation of surfaces. On the other hand, the existing cosmogenic-nuclide surface exposure ages from many parts of the Dry Valleys are younger than the age of surface deposits inferred from stratigraphic relations. This suggests some combination of surface erosion or past ice cover, both of which would reduce the apparent exposure age. This paper quantifies the regolith degradation and/or past ice cover by measuring 10Be and 26Al from a landslide deposit that contains 11.3 Ma volcanic ash. The surface sample yields an apparent exposure age of only 0.4 Ma. However, measurements of the subsurface nuclide concentrations show that the deposit has not been shielded by ice, and that the age of the ash does not conflict with the apparent exposure age when slow degradation of the deposit (2 m Ma−1) is taken into account. Soil creep, which is a common degradational process in a wide variety of environments, is non-existent at this field site, which likely reflects the persistent lack of bio- and cryoturbation.  相似文献   
29.
We revisit calculations of the cosmogenic production rates for several long-lived isotopes that are potential sources of background in searching for rare physics processes such as the detection of dark matter and neutrinoless double-beta decay. Using updated cosmic-ray neutron flux measurements, we use TALYS 1.0 to investigate the cosmogenic activation of stable isotopes of several detector targets and find that the cosmogenic isotopes produced inside the target materials and cryostat can result in large backgrounds for dark matter searches and neutrinoless double-beta decay. We use previously published low-background HPGe data to constrain the production of 3H on the surface and the upper limit is consistent with our calculation. We note that cosmogenic production of several isotopes in various targets can generate potential backgrounds for dark matter detection and neutrinoless double-beta decay with a massive detector, thus great care should be taken to limit and/or deal with the cosmogenic activation of the targets.  相似文献   
30.
In an actively deforming orogen, maintenance of a topographic steady state requires that hillslope erosion, river incision, and rock uplift rates are balanced over timescales of 105–107 years. Over shorter times, <105 years, hillslope erosion and bedrock river incision rates fluctuate with changes in climate. On 104-year timescales, the Marsyandi River in the central Nepal Himalaya has oscillated between bedrock incision and valley alluviation in response to changes in monsoon intensity and sediment flux. Stratigraphy and 14C ages of fill terrace deposits reveal a major alluviation, coincident with a monsoonal maximum, ca. 50–35 ky BP. Cosmogenic 10Be and 26Al exposure ages define an alluviation and reincision event ca. 9–6 ky BP, also at a time of strong South Asian monsoons. The terrace deposits that line the Lesser Himalayan channel are largely composed of debris flows which originate in the Greater Himalayan rocks up to 40 km away. The terrace sequences contain many cubic kilometers of sediment, but probably represent only 2–8% of the sediments which flushed through the Marsyandi during the accumulation period. At 104-year timescales, maximum bedrock incision rates are 7 mm/year in the Greater Himalaya and 1.5 mm/year in the Lesser Himalayan Mahabarat Range. We propose a model in which river channel erosion is temporally out-of-phase with hillslope erosion. Increased monsoonal precipitation causes an increase in hillslope-derived sediment that overwhelms the transport capacity of the river. The resulting aggradation protects the bedrock channel from erosion, allowing the river gradient to steepen as rock uplift continues. When the alluvium is later removed and the bedrock channel re-exposed, bedrock incision rates probably accelerate beyond the long-term mean as the river gradient adjusts downward toward a more “equilibrium” profile. Efforts to document dynamic equilibrium in active orogens require quantification of rates over time intervals significantly exceeding the scale of these millennial fluctuations in rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号