首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   2篇
  国内免费   10篇
地球物理   46篇
地质学   48篇
海洋学   1篇
天文学   6篇
自然地理   21篇
  2023年   3篇
  2022年   5篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   8篇
  2015年   14篇
  2014年   10篇
  2013年   4篇
  2012年   4篇
  2011年   9篇
  2010年   3篇
  2009年   6篇
  2008年   11篇
  2007年   6篇
  2006年   10篇
  2005年   8篇
  2004年   2篇
  2003年   3篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1993年   1篇
排序方式: 共有122条查询结果,搜索用时 16 毫秒
101.
This work presents the first reconstruction of late Pleistocene glacier fluctuations on Uturuncu volcano, in the Southern Tropical Andes. Cosmogenic 3He dating of glacial landforms provides constraints on ancient glacier position between 65 and 14 ka. Despite important scatter in the exposure ages on the oldest moraines, probably resulting from pre-exposure, these 3He data constrain the timing of the moraine deposits and subsequent glacier recessions: the Uturuncu glacier may have reached its maximum extent much before the global LGM, maybe as early as 65 ka, with an equilibrium line altitude (ELA) at 5280 m. Then, the glacier remained close to its maximum position, with a main stillstand identified around 40 ka, and another one between 35 and 17 ka, followed by a limited recession at 17 ka. Then, another glacial stillstand is identified upstream during the late glacial period, probably between 16 and 14 ka, with an ELA standing at 5350 m. This stillstand is synchronous with the paleolake Tauca highstand. This result indicates that this regionally wet and cold episode, during the Heinrich 1 event, also impacted the Southern Altiplano. The ELA rose above 5450 m after 14 ka, synchronously with the Bolling–Allerod.  相似文献   
102.
Optimizing sample preparation for the isotopic measurement of 10Be extracted from quartz mineral separates has a direct positive effect on the accuracy and precision of isotopic analysis. Here, we demonstrate the value of tracing Be throughout the extraction process (both after dissolution and after processing), producing pure Be (by optimizing ion exchange chromatography methods and quantifying quartz mineral separate and final Be fraction purity), and minimizing backgrounds (through reducing both laboratory process blanks and 10B isobaric interference). These optimization strategies increase the amount of 10Be available for analysis during accelerator mass spectrometry (AMS), while simultaneously decreasing interference and contamination, and ensuring that sample performance matches standard performance during analysis. After optimization of our laboratory's extraction methodology, 9Be3+ ion beam currents measured during AMS analysis, a metric for sample purity and Be yield through the extraction process, matched the 9Be3+ beam currents of AMS standards analyzed at the same time considering nearly 800 samples. Optimization of laboratory procedures leads to purer samples that perform better, more consistently, and more similarly to standards during AMS analysis, allowing for improved precision and accuracy of measurements used for dating and quantification of Earth surface processes.  相似文献   
103.
The East Antarctic Ice Sheet responds sluggishly to shifts in climate. To capture subtle changes in Antarctic climate, researchers have focused instead on smaller alpine and cirque glaciers that fringe the ice sheet throughout the McMurdo Dry Valleys. The exposure ages of glacial moraine boulders scatter widely and often incorporate large amounts of inheritance, prohibiting the construction of a regional deglaciation chronology. We present a new sampling technique that takes advantage of ubiquitous desert pavements and allows for the detection of inheritance in overlying glacial moraine boulders. Our approach requires a large sample set, but offers increased confidence in modeling moraine age, an acceptable trade-off considering the need for more refined Antarctic paleoclimate reconstructions. Using the beryllium-10 system in sandstone quartz, we show that single exposure ages collected from moraine boulder tops are frequently inaccurate, and consistently over- and underestimate moraine age. Difference Dating offers a new approach to dating alpine glacial moraines independent from traditional boulder exposure age dating.  相似文献   
104.
105.
An important constraint on the reliability of cosmogenic nuclide exposure dating is the rigorous determination of production rates. We present a new dataset for 10Be production rate calibration from Mount Billingen, southern Sweden, the site of the final drainage of the Baltic Ice Lake, an event dated to 11,620 ± 100 cal yr BP. Five samples of flood-scoured bedrock surfaces (58.5°N, 13.7°E, 105–120 m a.s.l.) unambiguously connected to the drainage event yield a reference 10Be production rate of 4.19 ± 0.20 atoms g−1 yr−1 for the CRONUS-Earth online calculator Lm scaling and 4.02 ± 0.18 atoms g−1 yr−1 for the nuclide specific LSDn scaling. We also recalibrate the reference 10Be production rates for four sites in Norway and combine three of these with the Billingen results to derive a tightly clustered Scandinavian reference 10Be production rate of 4.13 ± 0.11 atoms g−1 yr−1 for the CRONUS Lm scaling and 3.95 ± 0.10 atoms g−1 yr−1 for the LSDn scaling scheme.  相似文献   
106.
This study proposes an efficient new cleaning procedure for measuring in situ cosmogenic 10Be in olivines and pyroxenes. This chemical routine is specially designed to decontaminate the abundant meteoric 10Be from these minerals. The method was tested on mafic minerals from basaltic flows of Mt. Etna volcano and from Hawaiian flows and moraines. A sequential dissolution test shows that 10Be concentrations decrease with the number of cleaning steps until reaching a constant value. This is a necessary condition to demonstrate the efficiency of the method in properly decontaminating samples of meteoric 10Be. Moreover, cross-calibration with cosmogenic 3He measured within the same samples yielded a sea level high-latitude production rate of 4.5±0.4 at g−1 a−1 for cosmogenic 10Be in mafic minerals. This rate is within 1σ uncertainty of empirically or model-derived rates for 10Be on the same targets. Such concordance supports the consistency of the new method.  相似文献   
107.
Cosmogenic nuclide depth-profiles are used to calculate the age of landforms, the rates at which erosion has affected them since their formation and, in case of deposits, the paleo-erosion rate in the source area. However, two difficulties are typically encountered: 1) old deposits or strongly affected by cosmogenic nuclide inheritance often appear to be saturated, and 2) a full propagation of uncertainties often yields poorly constrained ages. Here we show how to combine surface-exposure-dating and burial-dating techniques in the same profile to get more accurate age results and to constrain the extent of pre-depositional burial periods. A 10Be–26Al depth-profile measured in an alluvial fan of SE Iberia is presented as a natural example.  相似文献   
108.
The Tian Shan Mountains is an active orogen in the continent. Previous studies on its tectonic deformation focus on the expanding fronts to basins on either side, while little work has been done on its interiors. This work studied the north-edge fault of the Yanqi Basin on the southeastern flank of Tian Shan. Typical offset landforms, and lineaments of scarps on the eastern segment of this fault were used to constrain the vertical displacement and shortening rates. Geological and geomorphic mapping in conjunction with high-resolution GPS differential measurement reveals that the vertical offsets can be divided into three groups of 1.9m, 2.4m and 3.0m, and the coseismic vertical offset was estimated as 0.5~0.6m. In situ 10Be terrestrial cosmogenic nuclide dating of three big boulders capping the regional geomorphic surface that preserved 3.0m vertical offset suggests that the surfaces were exposed at~5ka. Meanwhile, the lacustrine sediments from Bosten Lake within the Yanqi Basin suggest climate change during cooling-warming transitions was also at~5ka. The climate, therefore, controlled creation and abandonment of geomorphic surfaces in southern piedmont of Tian Shan. Combining the exposure ages and vertical offsets, we inferred that the east section of the north-edge fault in the Yanqi Basin has a dip slip rate 0.6~0.7mm/a,~0.5mm/a of vertical slip and~0.4mm/a of shortening since 5ka. Based on calculation of earthquake moment, we estimated that this fault is capable of generating M7.5 earthquakes in the future. This study provides new data for further understanding tectonic deformation of Tian Shan and is useful in seismic hazard assessment of this area.  相似文献   
109.
One of the major goals of geomorphology is to understand the rate of landscape evolution and the constraints that erosion sets on the longevity of land surfaces. The latter has also turned out to be vital in modern applications of cosmogenic exposure dating and interpretation of lichenometric data from unconsolidated landforms. Because the effects of landform degradation have not been well documented, disagreements exist among researchers regarding the importance of degradation processes in the dating techniques applied to exposures. Here, we show that all existing qualitative data and quantitative markers of landform degradation collectively suggest considerable lowering of the surface of unconsolidated landforms over the typical life span of Quaternary moraines or fault scarps. Degradation is ubiquitous and considerable even on short time scales of hundreds of years on steeply sloping landforms. These conservative analyses are based entirely on field observations of decreasing slope angles of landforms over the typical range of ages in western North America and widely accepted modeling of landscape degradation. We found that the maximum depth of erosion on fault scarps and moraines is on average 34% of the initial height of the scarp and 25% of the final height of the moraine. Although our observations are limited to fault scarps and moraines, the results apply to any sloping unconsolidated landform in the western North America. These results invalidate the prevailing assumption of no or little surface lowering on sloping unconsolidated landforms over the Quaternary Period and affirm that accurate interpretations of lichen ages and cosmogenically dated boulder ages require keen understanding of the ever-present erosion. In our view, the most important results are twofold: 1) to show with a large data set that degradation affects universally all sloping unconsolidated landforms, and 2) to unambiguously show that even conservative estimates of the total lowering of the surface operate at time and depth scales that significantly interfere with cosmogenic exposure and lichen dating.  相似文献   
110.
During the Last Glacial Maximum (LGM), long valley glaciers developed on the northern and southern sides of the High Tatra Mountains, Poland and Slovakia. Chlorine-36 exposure dating of moraine boulders suggests two major phases of moraine stabilization, at 26–21 ka (LGM I — maximum) and at 18 ka (LGM II). The dates suggest a significantly earlier maximum advance on the southern side of the range. Reconstructing the geometry of four glaciers in the Sucha Woda, Pańszczyca, Mlynicka and Velicka valleys allowed determining their equilibrium-line altitudes (ELAs) at 1460, 1460, 1650 and 1700 m asl, respectively. Based on a positive degree-day model, the mass balance and climatic parameter anomaly (temperature and precipitation) has been constrained for LGM I advance. Modeling results indicate slightly different conditions between northern and southern slopes. The N–S ELA gradient finds confirmation in slightly higher temperature (at least 1 °C) or lower precipitation (15%) on the south-facing glaciers during LGM I. The precipitation distribution over the High Tatra Mountains indicates potentially different LGM atmospheric circulation than at the present day, with reduced northwesterly inflow and increased southerly and westerly inflows of moist air masses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号