首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   17篇
  国内免费   40篇
测绘学   3篇
大气科学   2篇
地球物理   58篇
地质学   153篇
海洋学   61篇
综合类   8篇
自然地理   71篇
  2024年   3篇
  2023年   5篇
  2022年   2篇
  2021年   2篇
  2020年   14篇
  2019年   7篇
  2018年   7篇
  2017年   20篇
  2016年   4篇
  2015年   5篇
  2014年   13篇
  2013年   27篇
  2012年   5篇
  2011年   13篇
  2010年   12篇
  2009年   17篇
  2008年   41篇
  2007年   13篇
  2006年   17篇
  2005年   19篇
  2004年   21篇
  2003年   6篇
  2002年   11篇
  2001年   4篇
  2000年   9篇
  1999年   3篇
  1998年   7篇
  1997年   7篇
  1996年   9篇
  1995年   5篇
  1994年   3篇
  1993年   6篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1979年   1篇
排序方式: 共有356条查询结果,搜索用时 187 毫秒
71.
The passive continental margins of India have evolved as India broke and drifted away from East Antarctica, Madagascar and Seychelles at various geological times. In this study, we have attempted to collate and re-examine gravity and topographic/bathymetry data over India and the adjoining oceans to understand the structure and tectonic evolution of these margins, including processes such as crustal/lithosphere extension, subsidence due to sedimentation, magmatic underplating and so on. The Eastern Continental Margin of India (ECMI) seems to have evolved in a complex rift and shear tectonic settings in its northern and southern segments, respectively, and bears similarities with its conjugate in East Antarctica. Crustal extension rates are uniform along the stretch of the ECMI in spite of the presence or absence of crustal underplated material, variability in lithospheric strength and tectonic style of evolution ranging from rifting to shearing. The Krishna-Godavari basin is underlain by a strong ( 30 km) elastic lithosphere, while the Cauvery basin is underlain by a thin elastic lithosphere ( 3 km). The coupling between the ocean and continent lithosphere along the rifted segment of the ECMI is across a stretched continental crust, while it is direct beneath the Cauvery basin. The Western Continental Margin of India (WCMI) seems to have developed in an oblique rift setting with a strike-slip component. Unlike the ECMI, the WCMI is in striking contrast with its conjugate in the eastern margin of Madagascar in respect of sedimentation processes and alignment of magnetic lineations and fracture zones. The break up between eastern India and East Antarctica seems to have been accommodated along a Proterozoic mobile belt, while that between western India and Madagascar is along a combination of both mobile belt and cratonic blocks.  相似文献   
72.
金文强  高光明  肖娟 《地质找矿论丛》2010,25(4):362-365,371
采用Landsat-7 ETM+数据制作的7-4-3波段假彩色合成图像,对秘鲁北部的奇克拉约(Chiclayo)地区进行了构造目视解译,共解译出15条线性构造和10个环形构造,结合地质特征和实地勘查资料,圈定了4个成矿预测区。  相似文献   
73.
Like other low-elevation passive margins, the French Atlantic margin is characterized by a gradual topographic transition from the coast to low-altitude interior plains or plateaus. Here we propose a morphostratigraphic analysis to constrain long-term landscape evolution and denudation rates, through the characterization of palaeotopographies and related palaeoweatherings in an area restricted to the southeast Armorican Massif. Two regional-scale palaeosurfaces are recognized: (i) the Infraliassic palaeosurface, the truncated weathering profiles of which are sealed by Liassic marine deposits; (ii) the Eocene palaeosurface, underlain by thick kaolinite- and iron-rich palaeosaprolites and by siliceous duricrusts (silcretes). Quantitative constraints on large-scale tectonic uplift and long-term denudation are obtained from these morphostratigraphic markers. Mean uplift and denudation rates calculated on post-Eocene times range between 0.5 and 2 m.Ma-1. These low values imply high landscape stability of the inland margin over most of the Cenozoic.  相似文献   
74.
The Mesozoic sediments of Thakkhola (central Nepal) were deposited on a broad eastern north Gondwanan passive margin at mid-latitudes (28–41 °S) facing the Southern Tethys ocean to the north. The facies is strikingly similar over a distance of several thousand kilometres from Ladakh in the west to Tibet and to the paleogeographically adjacent north-west Australian margin (Exmouth Plateau, ODP Legs 122/123) and Timor in the east. Late Paleozoic rifting led to the opening of the Neo-Tethys ocean in Early Triassic times. An almost uninterrupted about 2 km thick sequence of syn-rift sediments was deposited on a slowly subsiding shelf and slope from Early Triassic to late Valanginian times when break-up between Gondwana (north-west Australia) and Greater India formed the proto-Indian Ocean. The sedimentation is controlled by (1) global events (eustasy; climatic/oceanographic changes due to latitudinal drift; plate reorganization leading to rift-type block-faulting) and (2) local factors, such as varying fluvio-deltaic sediment input, especially during Permian and late Norian times. Sea level was extremely low in Permian, high in Carnian and low again during Rhaeto-Liassic times. Third-order sea-level cycles may have occurred in the Early Triassic and late Norian to Rhaeto-Liassic. During the Permian pure quartz sand and gravel were deposited as shallowing upward series of submarine channel or barrier island sands. The high compositional maturity is typical of a stable craton-type hinterland, uplifted during a major rifting episode. During the early Triassic a 20–30 m thick condensed sequence of nodular ‘ammonitico rosso’-type marlstone with a ‘pelagic’ fauna was deposited (Tamba Kurkur Formation). This indicates tectonic subsidence and sediment starvation during the transgression of the Neo-Tethys ocean. During Carnian times a 400 m thick sequence of fining upward, filament-rich wackestone/shale cycles was deposited in a bathyal environment (Mukut Formation). This is overlain by about 300 m of sandy shale and siltstone intercalated with quartz-rich bioclastic grain- to rudstone (Tarap Shale Formation, late Carnian-Norian). The upper Norian to (?lower) Rhaetian Quartzite Formation consists of (sub)arkosic sandstones and pure quartz arenites, indicating different sediment sources. The fluvio-deltaic sandstones are intercalated with silty shale, coal and bioclastic limestone, as well as mixed siliciclastic-bioclastic rocks. The depositional environment was marginal marine to shallow subtidal. The fluvio-deltaic influence decreased towards the overlying carbonates of Rhaeto-Liassic (?) age (Jomosom Formation correlative with the Kioto Limestone), when the region entered tropical paleolatitudes resulting in platform carbonates.  相似文献   
75.
The earthquakes of central coastal Peru occur principally in two distinct zones of shallow earthquake activity that are inland of and parallel to the axis of the Peru Trench. The interface-thrust (IT) zone includes the great thrust-fault earthquakes of 17 October 1966 and 3 October 1974. The coastal-plate interior (CPI) zone includes the great earthquake of 31 May 1970, and is located about 50 km inland of and 30 km deeper than the interface thrust zone. The occurrence of a large earthquake in one zone may not relieve elastic strain in the adjoining zone, thus complicating the application of the seismic gap concept to central coastal Peru. However, recognition of two seismic zones may facilitate detection of seismicity precursory to a large earthquake in a given zone; removal of probable CPI-zone earthquakes from plots of seismicity prior to the 1974 main shock dramatically emphasizes the high seismic activity near the rupture zone of that earthquake in the five years preceding the main shock. Other conclusions on the seismicity of coastal Peru that affect the application of the seismic gap concept to this region are: (1) Aftershocks of the great earthquakes of 1966, 1970, and 1974 occurred in spatially separated clusters. Some clusters may represent distinct small source regions triggered by the main shock rather than delimiting the total extent of main-shock rupture. The uncertainty in the interpretation of aftershock clusters results in corresponding uncertainties in estimates of stress drop and estimates of the dimensions of the seismic gap that has been filled by a major earthquake. (2) Aftershocks of the great thrust-fault earthquakes of 1966 and 1974 generally did not extend seaward as far as the Peru Trench. (3) None of the three great earthquakes produced significant teleseismic activity in the following month in the source regions of the other two earthquakes. The earthquake hypocenters that form the basis of this study were relocated using station adjustments computed by the method of joint hypocenter determination.  相似文献   
76.
Direct observation and extensive sampling in ancient margins exposed in the Alps, combined with drill-hole and geophysical data from the present-day Iberia margin, result in new concepts for the strain evolution and near-surface response to lithospheric rupturing at magma-poor rifted margins. This paper reviews data and tectonic concepts derived from these two margins and proposes that extension, leading to thinning and final rupturing of the continental lithosphere, is accommodated by three fault systems, each of them characterized by a specific temporal and spatial evolution during rifting of the margin, by its fault geometry, and its surface response. The data presented in this paper suggest that margin architecture and distribution of rift structures within the future margin are controlled first by inherited heterogeneities within the lithosphere leading to a contrasting behaviour of the future distal and proximal margins during an initial stage of rifting. The place of final break-up appears to be determined early in the evolution of the margin and occurs where the crust has been thinned during a first stage to less than 10 kilometres. During final break-up, the rheology of the extending lithosphere is controlled by the thermal structure related to the rise of the asthenosphere and by serpentinization and magmatic processes.Dedicated to Daniel Bernoulli who taught me to compare the geological record of oceans and orogens  相似文献   
77.
Prosopis pallida H.B.K. is one of the most economically and ecologically important tree species in the arid and semi-arid lands of the American continent. Sections of P. pallida were used to describe its wood anatomy and to determine whether annual rings were visible or not. Results showed that P. pallida has well-differentiated annual growth rings and is therefore suitable for dendrochronological studies. Tree ring chronologies correlate well with precipitation events related to El Niño Southern Oscillation phases. A master chronology for the northern area of Peru was built with these data, and some physiological derivations from the anatomy of P. pallida wood are discussed.  相似文献   
78.
D.R. Gray  D.A. Foster   《Tectonophysics》2004,385(1-4):181-210
Structural thickening of the Torlesse accretionary wedge via juxtaposition of arc-derived greywackes (Caples Terrane) and quartzo-feldspathic greywackes (Torlesse Terrane) at 120 Ma formed a belt of schist (Otago Schist) with distinct mica fabrics defining (i) schistosity, (ii) transposition layering and (iii) crenulation cleavage. Thirty-five 40Ar/39Ar step-heating experiments on these micas and whole rock micaceous fabrics from the Otago Schist have shown that the main metamorphism and deformation occurred between 160 and 140 Ma (recorded in the low grade flanks) through 120 Ma (shear zone deformation). This was followed either by very gradual cooling or no cooling until about 110 Ma, with some form of extensional (tectonic) exhumation and cooling of the high-grade metamorphic core between 109 and 100 Ma. Major shear zones separating the low-grade and high-grade parts of the schist define regions of separate and distinct apparent age groupings that underwent different thermo-tectonic histories. Apparent ages on the low-grade north flank (hanging wall to the Hyde-Macraes and Rise and Shine Shear Zones) range from 145 to 159 Ma (n=8), whereas on the low-grade south flank (hanging wall to the Remarkables Shear Zone or Caples Terrane) range from 144 to 156 Ma (n=5). Most of these samples show complex age spectra caused by mixing between radiogenic argon released from neocrystalline metamorphic mica and lesser detrital mica. Several of the hanging wall samples with ages of 144–147 Ma show no evidence for detrital contamination in thin section or in the form of the age spectra. Apparent ages from the high-grade metamorphic core (garnet–biotite–albite zone) range from 131 to 106 Ma (n=13) with a strong grouping 113–109 Ma (n=7) in the immediate footwall to the major Remarkables Shear Zone. Most of the age spectra from within the core of the schist belt yield complex age spectra that we interpret to be the result of prolonged residence within the argon partial retention interval for white mica (430–330 °C). Samples with apparent ages of about 110–109 Ma tend to give concordant plateaux suggesting more rapid cooling. The youngest and most disturbed age spectra come from within the ‘Alpine chlorite overprint’ zone where samples with strong development of crenulation cleavage gave ages 85–107 and 101 Ma, due to partial resetting during retrogression. The bounding Remarkables Shear zone shows resetting effects due to dynamic recrystallization with apparent ages of 127–122 Ma, whereas overprinting shear zones within the core of the schist show apparent ages of 112–109 and 106 Ma. These data when linked with extensional exhumation of high-grade rocks in other parts of New Zealand indicate that the East Gondwana margin underwent significant extension in the 110–90 Ma period.  相似文献   
79.
80.
In this paper, authors obtain the spectral peaks of the earth free oscillation and check all normal modes from 0S0 to 0S48 accurately, with the Fourier analysis and the maximum entropy spectrum method dealing jointly with six groups of the observational residual data from five international superconducting gravimeter stations. By comparing the observational results in this paper with three former groups of observations or models, authors notice an extra discrepancy between two observational 0S2 modes excited separately by Peru earthquake and Alaska earthquake, which probably mirrors the anisotropy of the Earth's inner core. The analysis on the splitting 1S2 mode shows that the asymmetric factor of rotationwise spectral splitting is possible to be different from that of anti-rotationwise spectral splitting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号