全文获取类型
收费全文 | 268篇 |
免费 | 46篇 |
国内免费 | 97篇 |
专业分类
测绘学 | 2篇 |
地球物理 | 50篇 |
地质学 | 290篇 |
海洋学 | 5篇 |
综合类 | 9篇 |
自然地理 | 55篇 |
出版年
2024年 | 2篇 |
2023年 | 3篇 |
2022年 | 9篇 |
2021年 | 13篇 |
2020年 | 4篇 |
2019年 | 14篇 |
2018年 | 9篇 |
2017年 | 18篇 |
2016年 | 14篇 |
2015年 | 18篇 |
2014年 | 28篇 |
2013年 | 29篇 |
2012年 | 25篇 |
2011年 | 13篇 |
2010年 | 14篇 |
2009年 | 8篇 |
2008年 | 16篇 |
2007年 | 16篇 |
2006年 | 13篇 |
2005年 | 11篇 |
2004年 | 8篇 |
2003年 | 6篇 |
2002年 | 17篇 |
2001年 | 15篇 |
2000年 | 14篇 |
1999年 | 6篇 |
1998年 | 11篇 |
1997年 | 6篇 |
1996年 | 10篇 |
1995年 | 2篇 |
1994年 | 8篇 |
1993年 | 5篇 |
1992年 | 4篇 |
1991年 | 3篇 |
1990年 | 6篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1986年 | 6篇 |
1985年 | 1篇 |
1984年 | 1篇 |
排序方式: 共有411条查询结果,搜索用时 0 毫秒
121.
采用常规宝石学鉴定方法、反光显微镜、X射线粉末衍射仪(XRD)、电子探针X射线显微分析仪(EPMA)、傅里叶变换红外光谱仪(FTIR)等测试方法,对山东昌乐蓝宝石砂矿中的一种副矿物样品进行了常规的宝石学、矿物学、谱学特征研究。肉眼观察,这种副矿物样品呈黑色、不透明,具有强磁性,摩氏硬度大于小刀。在反光显微镜下,该样品为钢灰色,呈现不透明的四边形颗粒状。X射线粉末衍射及电子探针成分分析的结果表明,该副矿物样品为富含Ti的磁铁矿,其晶体结构中类质同象替代广泛,但未见对人体有害的微量元素。该样品的红外光谱与磁铁矿的标准红外光谱基本一致。 相似文献
122.
陕西汉南毕机沟钒钛磁铁矿锆石U-Pb年代学及其意义 总被引:1,自引:0,他引:1
毕机沟钒钛磁铁矿位于扬子板块北缘汉南杂岩的西北部,是基性-超基性杂岩体分异演化的产物。矿区范围出露的岩石主要包括橄长岩、辉长岩、辉长闪长岩和闪长岩,具有明显岩相分带和韵律旋回特征。目前,已发现的多个钒钛磁铁矿体均位于基性岩-超基性杂岩体的辉长岩相带内。本次研究对毕机沟矿区的含矿辉长岩和穿切含矿辉长岩的花岗岩脉进行了原位微区LA-MC-ICPMS锆石U-Pb定年,获得两者的侵位时间分别为(783±4)Ma(MSWD=0.09)和(759±4)Ma(MSWD=1.50),结果表明毕机沟钒钛磁铁矿的成矿时代大约为783 Ma,但不晚于759 Ma。结合前人区域成果资料,毕机沟含钒钛磁铁矿的基性-超基性杂岩体与该区新元古代大规模具岛弧性质的基性-超基性杂岩体的形成时代相近,我们认为毕机沟钒-钛磁铁矿可能形成于活动型大陆边缘环境。 相似文献
123.
通过分析辉铜山铜矿体特征及矿山开采时深部找矿成果,发现矿体具SE向倾伏趋势,地表被大面积第四系覆盖。对测区岩(矿)石进行物性测量,发现区内矿石具高极化中低阻电性特征,与围岩电性差异明显,可用激发极化法进行深部地球信息探测。在1∶1万矿区地质填图基础上,采用激电中梯和激电测深2种方法进行矿产勘查,圈定2处明显的激电异常。结合区内地质特征和钻孔资料,发现高极化中低阻激电异常与推测的隐伏铜矿体具良好的空间对应关系,显示该矿区具良好的深部找矿潜力,为进一步详查工作提供了依据。 相似文献
124.
125.
126.
新疆西天山晚古生代磁铁矿带是中国重要的铁矿带,其成矿地质背景与成因类型一直以来存在很大的争论.本文在已有研究成果的基础上,结合大量野外调查资料和室内研究工作,对西天山主要磁铁矿床的成因类型、成矿背景、成矿规律进行了详细研究.研究表明,主要磁铁矿床矿石矿物Sr、Nd、Pb同位素基本落入洋陆俯冲碰撞下的岛弧环境;矿石形成年龄介于火山岩与中酸性侵入岩之间,接近于火山岩年龄,矿石与火山岩具有密切的成因联系.矿床总体归为海相火山岩型铁矿,可划分出3个亚类:火山喷溢型、火山-次火山热液型、火山喷溢-热液叠加型,不同亚类矿床具有不同的矿体、矿石特征.铁矿石的形成与俯冲带流体的交代作用有着密切的关系,早期为富铁岩浆交代后分异结晶作用的产物,后期则为火山热液沿断裂、裂隙交代、卸载的产物. 相似文献
127.
Trace Element Geochemistry of Magnetite from the Fe(-Cu) Deposits in the Hami Region, Eastern Tianshan Orogenic Belt, NW China 总被引:5,自引:0,他引:5
Laser ablation–inductively coupled plasma–mass spectrometry(LA–ICP–MS) was used to determine the trace element concentrations of magnetite from the Heifengshan, Shuangfengshan, and Shaquanzi Fe(–Cu) deposits in the Eastern Tianshan Orogenic Belt. The magnetite from these deposits typically contains detectable Mg, Al, Ti, V, Cr, Mn, Co, Ni, Zn and Ga. The trace element contents in magnetite generally vary less than one order of magnitude. The subtle variations of trace element concentrations within a magnetite grain and between the magnetite grains in the same sample probably indicate local inhomogeneity of ore–forming fluids. The variations of Co in magnetite between samples are probably due to the mineral proportion of magnetite and pyrite. Factor analysis has discriminated three types of magnetite: Ni–Mn–V–Ti(Factor 1), Mg–Al–Zn(Factor 2), and Ga– Co(Factor 3) magnetite. Magnetite from the Heifengshan and Shuangfengshan Fe deposits has similar normalized trace element spider patterns and cannot be discriminated according to these factors. However, magnetite from the Shaquanzi Fe–Cu deposit has affinity to Factor 2 with lower Mg and Al but higher Zn concentrations, indicating that the ore–forming fluids responsible for the Fe–Cu deposit are different from those for Fe deposits. Chemical composition of magnetite indicates that magnetite from these Fe(–Cu) deposits was formed by hydrothermal processes rather than magmatic differentiation. The formation of these Fe(–Cu) deposits may be related to felsic magmatism. 相似文献
128.
129.
从磁铁矿矿石的磁性差异入手,对铁(铜)矿床中各矿体的矿石磁性特征进行了系统的描述,得出大冶铁矿铁(铜)矿床是一个磁性特征变化较大的矿区.之后对矿石中引起磁性差异的原因进行了分析,并指出影响磁铁矿矿石磁性特征的主要因素为矿石的矿物组成、化学成分以及矿石的结构和构造. 相似文献
130.
Competition between enzymatic and abiotic reduction of uranium(VI) under iron reducing conditions 总被引:1,自引:0,他引:1
Reduction of U(VI) under iron reducing conditions was studied in a model system containing the dissimilatory metal-reducing bacterium Shewanella putrefaciens and colloidal hematite. We focused on the competition between direct enzymatic uranium reduction and abiotic reduction of U(VI) by Fe(II), catalyzed by the hematite surface, at relatively low U(VI) concentrations (< 0.5 μM) compared to the concentrations of ferric iron (> 10 mM). Under these conditions surface catalyzed reduction by Fe(II), which was produced by dissimilatory iron reduction, was the dominant pathway for uranium reduction. Reduction kinetics of U(VI) were identical to those in abiotic controls to which soluble Fe(II) was added. Strong adsorption of U(VI) at the hematite surface apparently favored the abiotic pathway by reducing the availability of U(VI) to the bacteria. In control experiments, lacking either hematite or bacteria, the addition of 45 mM dissolved bicarbonate markedly slowed down U(VI) reduction. The inhibition of enzymatic U(VI) reduction and abiotic, surface catalyzed U(VI) reduction by the bicarbonate amendments is consistent with the formation of aqueous uranyl-carbonate complexes. Surprisingly, however, more U(VI) was reduced when dissolved bicarbonate was added to experimental systems containing both bacteria and hematite. The enhanced U(VI) reduction was attributed to the formation of magnetite, which was observed in experiments. Biogenic magnetite produced as a result of dissimilatory iron reduction may be an important agent of uranium immobilization in natural environments. 相似文献