首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1247篇
  免费   297篇
  国内免费   285篇
测绘学   17篇
大气科学   102篇
地球物理   308篇
地质学   1159篇
海洋学   85篇
天文学   6篇
综合类   49篇
自然地理   103篇
  2024年   10篇
  2023年   25篇
  2022年   31篇
  2021年   49篇
  2020年   51篇
  2019年   68篇
  2018年   64篇
  2017年   63篇
  2016年   73篇
  2015年   54篇
  2014年   56篇
  2013年   105篇
  2012年   103篇
  2011年   83篇
  2010年   71篇
  2009年   74篇
  2008年   77篇
  2007年   74篇
  2006年   73篇
  2005年   73篇
  2004年   56篇
  2003年   54篇
  2002年   48篇
  2001年   50篇
  2000年   39篇
  1999年   43篇
  1998年   35篇
  1997年   39篇
  1996年   27篇
  1995年   32篇
  1994年   25篇
  1993年   20篇
  1992年   13篇
  1991年   12篇
  1990年   17篇
  1989年   9篇
  1988年   12篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有1829条查询结果,搜索用时 27 毫秒
101.
通过详细的野外地质调查,在北秦岭双龙-夏馆地区精确圈定出大面积榴闪岩,榴闪岩常以似层状、条带状、豆荚状和透镜状产于秦岭岩群郭庄岩组混合片麻岩内,空间上可划分三个带:南带与松树沟一带的麻粒岩构成一个较宽的高压-超高压变质带,北带则与官坡-双槐树一带的榴辉岩构成一线,而中带向西可能延伸至丹凤大寺沟一带。区内榴闪岩主体受秦岭岩群郭庄岩组的展布形态控制,呈面状遍布于整个郭庄岩组内,而非局限于某一侧或两侧,暗示秦岭岩群可能整体卷入早古生代的俯冲和碰撞作用。野外宏观特征、岩相学及锆石U-Pb年代学研究表明榴闪岩原岩为辉长岩,成岩年龄为654.1±5.6Ma、656.1±6.7Ma,获得峰期高压麻粒岩相变质年龄为472.9±6.0Ma、485.0±33.0Ma,其后分别在455.4±9.0Ma、416.7±1.9Ma和401.1±6.2Ma遭受了多期次退变作用的叠加。结合区域研究成果,初步认为北秦岭高压-超高压基性岩石的原岩至少存在于新元古代中期和晚期,其成岩时代分别与扬子地块北缘新元古代中、晚期的镁铁-超镁铁质岩床群一致,并具有相似的地球化学特征,而两者是否为同一大地构造背景下的同期侵位的产物,尚待进一步研究。  相似文献   
102.
济阳坳陷上第三系的沉积特征及沉积相的纵向演化规律   总被引:2,自引:0,他引:2  
本文根据岩性特征、沉积构造、砂体厚度和测井曲线特征等资料,对4口岩心井进行了沉积相分析,详细研究了不同时期的河流类型及沉积相的演化规律,从而认为济阳凹陷上第三系沉积大体经历了3个阶段:早期的冲积扇一辫状河阶段,中期的辫状河一低弯度曲流河阶段及晚期的高弯度曲流河阶段,同时分析了不同砂体的油气储集性能。  相似文献   
103.
《Resource Geology》2018,68(3):287-302
Banded iron formations (BIFs) are the most significant source of iron in the world. In this study, we report petrographic and geochemical data of the BIF from the Meyomessi area in the Ntem Complex, southern Cameroon, and discuss their genesis and the iron enrichment process. Field investigations and petrography have revealed that the studied BIF samples are hard; compact; weakly weathered; and composed of magnetite, subordinate quartz, and geothite. The geochemical composition of the whole rock reveals that iron and silica represent more than 98 wt% of the average composition, whereas Al2O3, TiO2, and high‐field strength elements (HFSE) contents are very low, similar to detritus‐free marine chemical precipitates. The total iron (TFe) contents range from 48.71 to 65.32 wt % (average of 53.29 wt %) and, together with the low concentrations of deleterious elements (0.19 wt % P on average), are consistent with medium‐grade iron ores by global standards. This interpretation is confirmed by the SiO2/Fe2O3total versus (MgO + CaO + MnO)/Fe2O3total discrimination plot in which most of the Meyomessi BIF samples fall in the field of medium‐grade siliceous ore. Only one sample (MGT94) plots in the high‐grade magnetite–geothite ore domain. The high Fe/Ti (376.36), Fe/Al (99.90), and Si/Al (29.26) ratios of the sample are consistent with significant hydrothermal components. The rare earth elements (REE) contents of the studied BIF samples are very low (∑REE: 0.81–1.47 ppm), and the Post‐Archaean Australian Shale (PAAS)‐normalized patterns display weak positive Eu anomalies (Eu/Eu*: 1.15–1.33), suggesting a syngenetic low‐temperature hydrothermal solutions, similar to other BIF worldwide. However, the Meyomessi BIFs show high Fe contents when compared to the other BIFs. This indicates an epigenetic mineralization process affected the Meyomessi BIF. From the above results and based on the field and analytical data, we propose that the genetic model of iron ores at the Meyomessi area involves two stages of the enrichment process, hypogene enrichment of BIF protore by metamorphic and magmatic fluids followed by supergene alteration as indicated by the presence of goethite in the rocks.  相似文献   
104.
The Xilingol Complex comprises biotite gneisses and amphibolite interlayers with extensive migmatization. Four representative samples were documented and found to record either two or three metamorphic stages. Phase modelling using thermocalc suggests that the observed assemblages represent the final stages that underwent cooling from temperature peaks, and are consistent with a fluid‐absent solidus in P–T pseudosections. Their P–T conditions are further constrained to be 5–6 kbar/680–725°C and 4–5 kbar/650–680°C for two garnet‐bearing gneiss samples, 4–5 kbar/660–730°C for a cordierite‐bearing gneiss sample, and 4–5 kbar/680–710°C for an amphibolite sample based on mineral composition isopleths, involving measured Mg content in biotite, anorthite in plagioclase, grossular and pyrope in garnet and Ti content in amphibole. The peak temperature conditions recovered are 760–790°C or >760°C at 5–6 kbar based on the composition isopleths of plagioclase, biotite, garnet and especially the comparison of melt contents between the calculated and observed. A pre‐peak heating process with slight decompression can be suggested for some samples on the basis of the core–rim increase in the plagioclase anorthite, and the stability of ilmenite. Zircon U–Pb dating using the LA‐ICP‐MS method provides systemic constraints on the metamorphic ages of the Xilingol Complex to be 348–305 Ma, interpreted to represent the post‐peak cooling stages. Moreover, metagabbroic dykes that intruded into the Xilingol Complex yield 317 ± 3 Ma from magmatic zircon, and are considered to have played a significant role for heat advection triggering the high‐T and low‐P metamorphism. Thus, the clockwise P–T paths involving pre‐peak heating, peak and post‐peak cooling recovered for the Xilingol Complex are consistent with an extensional setting in the Carboniferous that developed on a previous orogen in response to addition of mantle‐derived materials probably together with upwelling of the asthenospheric mantle.  相似文献   
105.
《International Geology Review》2012,54(15):1856-1883
ABSTRACT

Here we report new LA-ICPMS U–Pb zircon geochronology of ultrahigh temperature (UHT) metasedimentary rocks and associated crystallized melt patches, from the central Highland Complex (HC), Sri Lanka. The detrital zircon 206Pb/238U age spectra range between 2834 ± 12 and 722 ± 14 Ma, evidencing new and younger depositional ages of sedimentary protoliths than those known so far in the HC. The overgrowth domains of zircons in these UHT granulites yield weighted mean 206Pb/238U age clusters from 665.5 ± 5.9 to 534 ± 10 Ma, identified as new metamorphic ages of the metasediments in the HC. The zircon ages of crystallized in situ melt patches associated with UHT granulites yield tight clusters of weighted mean 206Pb/238U ages from 558 ± 1.6 to 534 ± 2.4 Ma. Thus, using our results coupled with recently published geochronological data, we suggest a new geochronological framework for the evolutionary history of the metasedimentary package of the HC. The Neoarchean to Neoproterozoic ages of detrital zircons indicate that the metasedimentary package of the HC has derived from ancient multiple age provenances and deposited during the Neoproterozoic Era. Hence, previously reported upper intercept ages of ca. 2000–1800 Ma from metaigneous rocks should be considered as geochronological evidence for existence of a Palaeoproterozoic igneous basement which possibly served as a platform for the deposition of younger supracrustal rocks, rather than timing of magmatic intrusions into the already deposited ancient sediments, as has been conventionally interpreted. The intense reworking of entire Palaeoproterozoic basement rocks in the Gondwana Supercontinent assembly may have caused sediments of multiple ages and provenances to incorporate within supra-crustal sequences of the HC. Further, our data supports a convincing geochronological correlation between the HC of Sri Lanka and the Trivandrum Block of Southern India, disclosing the Gondwanian linkage between the HC of Sri Lanka and Southern Granulite Terrain of India.  相似文献   
106.
The proto-Darling Fault zone and its successor, the Darling Fault, extend for 1, 000 km along the western continental margin of Australia and appear to have been active at several periods during the geological past. Deformation commenced at 2,570 Ma and affected Late Archaean granitoids along the western margin of the Yilgarn Craton. Much of the later activity reflects events related to the accretion and breakup associated with the Rodinia and Gondwanaland supercontinent cycles.In the north, rocks of the Northampton and Mullingarra Complexes form part of a high-grade Grenvillian orogenic belt lying to the west of the Darling Fault, referred to as the Pinjarra Orogen. They underwent granulite facies metamorphism 1080 Ma ago and form part of the global collisional event that resulted in the amalgamation of Rodinia. These rocks extend southward beneath Phanerozoic sedimentary cover (the Perth Basin), where they are constrained to the east by the Darling Fault and to the west by the Dunsborough Fault, the latter marking the eastern boundary of the Leeuwin Complex.The Leeuwin Complex is a fragment of Pan-African crust that has traditionally been considered part of the Pinjarra Orogen. It is composed predominantly of upper amphibolite to granulite facies felsic orthogneisses derived from A-type, anorogenic granitoids. Conventional and SHRIMP U-Pb zircon geochronology has established that the granitoids evolved between 780 Ma and 520 Ma and were metamorphosed at 615 Ma. These events are equated with rifting associated with the breakup of Rodinia. Sm-Nd whole rock data support the juvenile nature of the crust and provide no evidence for the involvement of pre-existing Archaean continental material.During the Phanerozoic, the Dunsborough and Darling Faults were reactivated, as normal faults defining the inner arm of a major rift system within Eastern Gondwanaland and controlling sedimentation in the Perth Basin that now overlies the Grenvillian terrane. Major normal movement on the Darling Fault ceased by the Late Jurassic and it appears that continental breakup in the Early Cretaceous occurred along fractures closely related to the western boundary of the Leeuwin Complex that defined the eastern margin of the outer arm of the rift system. Breakup between Australia and Greater India commenced at 132 Ma and was followed by eruption of the Bunbury Basalt at 130 Ma and 123 Ma. This possibly resulted from hot spot activity beneath Eastern Gondwanaland and may have been a reflection of the Kerguelen plume, though the evidence is equivocal.It is argued from the petrographic, geochemical and isotopic characteristics, together with the likely contiguity of the Eastern Gondwanaland continents since the assembly of Rodinia, that the Leeuwin Complex evolved within an intracrustal rift and is not an exotic terrane. It is distinct from adjacent portions of the Pinjarra Orogen and should be considered a separate terrane. It is recommended that use of the term ‘Pinjarra Orogen’ be confined to rocks recording the Grenvillian events, thereby excluding those rocks (the Leeuwin Complex) that evolved during the later Pan-African orogeny.  相似文献   
107.
西天山古元古代木札尔特岩群地质特征及时代厘定   总被引:1,自引:1,他引:1  
西天山木札尔特岩群发育于塔里木原始古陆台内毗邻陆缘活动带,为一套角闪岩相中深变质岩系,主要岩石组合为变粒岩-浅粒岩-片麻岩-斜长角闪岩-大理岩等,局部受韧性变形改造形成各类糜棱岩系,原岩为中基性火山熔岩-火山碎屑岩-火山碎屑沉积岩夹碳酸盐岩建造.由于缺少古生物化石,其地层时代主要依据区域地层对比和同位素年代学数据进行确定.笔者应用钐钕全岩等时线定年法,在该岩群斜长角闪岩中获得(1966±93)Ma的同位素年龄,这是迄今为止,西天山范围内该岩群内获得的最古老同位素年龄,代表了其成岩年龄.据国际地层表(2000)关于古元古界造山系2 050~1 800 Ma的划分方案,笔者最终将西天山木札尔特岩群成岩时代厘定为古元古代造山纪.  相似文献   
108.
汤原断陷和方正断陷是位于依兰—舒兰地堑内两个主要的一级负向构造单元,表现为受东西两条深大断裂控制的双断式断陷。汤原断陷和方正断陷古近系宝泉岭组二段在相类似的构造与沉积背景下沉积特征有异同。共识别出3种主要沉积相类型:扇三角洲相、湖泊相和湖底扇相。控盆断裂对这两个断陷的沉积具有同样重要的控制作用,宝二段沉积时期方正断陷的构造作用强度比汤原断陷大得多,方正断陷湖盆面积比汤原断陷小,但湖盆深度要深。  相似文献   
109.
安徽省大别山南部宿松杂岩变质作用研究   总被引:7,自引:13,他引:7  
魏春景  单振刚 《岩石学报》1997,13(3):356-368
宿松杂岩的变质作用可分为3个阶段:早期、主期和晚期阶段。主期阶段的矿物组合在云母片岩中为石榴石+多硅白云母+石英+磁铁矿±钠云母±绿帘石/黝帘石;在白云母钠长(二长)片岩和片麻岩中为石榴石+多硅白云母+钠长石+石英+绿帘石/黝帘石±冻蓝闪石;在石榴石钠长角闪岩中为石榴石+冻蓝闪石+钠长石+黝帘石+石英±钠云母±金红石/磁铁矿。根据多种地质温压计和变质反应可以推测主期变质条件为:T=520℃~580℃,P=1.2~1.4GPa,地热梯度为12℃/km,相当于高压过渡型。晚期阶段变质条件为:T=460℃~480℃,P=0.6~0.7GPa,为中压绿帘角闪岩相。宿松杂岩的变质条件介于其南部的蓝闪绿片岩相和北部的榴辉岩相之间,三者是扬子板块向华北板块之下俯冲到不同深度的产物。  相似文献   
110.
摘要:通过实验研究探讨了太行山前平原地下调蓄能力,实验研究表明,在汇水坑渗、井灌和引水渠渗条件下,太行山前冲洪积平原地下调蓄功能不仅与地表积水深度、入渗时间有关,而且还与汇水总量的多少有关。单位时间渗漏量的大小与地表蓄水深度呈正相关关系。地表蓄水深度愈大,单位时间渗漏量愈大;累计渗漏量随着入渗时间的延长而增加,渗漏速率随着累计渗漏量的增加而减小。采用井灌方式进行地下调蓄的关键,是选择具有强渗透性的层位。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号